Đề toán tuyển sinh lớp 10 của các tỉnh Đề 17
lượt xem 2
download
Tham khảo đề thi - kiểm tra 'đề toán tuyển sinh lớp 10 của các tỉnh đề 17', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề toán tuyển sinh lớp 10 của các tỉnh Đề 17
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN HẢI DƯƠNG NGUYỄN TRÃI NĂM HỌC 2012- 2013 Môn thi: TOÁN (không chuyên) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Ngày thi 19 tháng 6 năm 2012 Đề thi gồm : 01 trang Câu I (2,0 điểm) x 1 1) Giải phương trình x 1. 3 x 3 3 3 0 2) Giải hệ phương trình . 3 x 2 y 11 Câu II ( 1,0 điểm) 1 1 a +1 Rút gọn biểu thức P = + : với a > 0 và a 4 . 2 a -a 2- a a-2 a Câu III (1,0 điểm) Một tam giác vuông có chu vi là 30 cm, độ dài hai cạnh góc vuông hơn kém nhau 7cm. Tính độ dài các cạnh của tam giác vuông đó. Câu IV (2,0 điểm) 1 Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x - m +1 và parabol (P): y = x 2 . 2 1) Tìm m để đường thẳng (d) đi qua điểm A(-1; 3). 2) Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2 ; y2) sao cho x1x 2 y1 + y 2 48 0 . Câu V (3,0 điểm) Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D, AD cắt (O) tại E (E A) . 1) Chứng minh BE2 = AE.DE. 2) Qua C kẻ đường thẳng song song với BD cắt AB tại H, DO cắt BC tại F. Chứng minh tứ giác CHOF nội tiếp . 3) Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH. Câu VI ( 1,0 điểm) 1 1 Cho 2 số dương a, b thỏa mãn 2 . Tìm giá trị lớn nhất của biểu thức a b 1 1 Q 4 4 . a b 2ab b a 2ba 2 2 2 2 Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 1
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NGUYỄN TRÃI HẢI DƯƠNG NĂM HỌC 2012 - 2013 HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM MÔN TOÁN (không chuyên) Hướng dẫn chấm gồm : 02 trang I) HƯỚNG DẪN CHUNG. - Thí sinh làm bài theo cách riêng nhưng đáp ứng được yêu cầu cơ bản vẫn cho đủ điểm. - Việc chi tiết điểm số (nếu có) so với biểu điểm phải được thống nhất trong Hội đồng chấm. - Sau khi cộng điểm toàn bài, điểm lẻ đến 0,25 điểm. II) ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM. Câu Nội dung Điểm Câu I (2,0đ) 1) 1,0 điểm x 1 0,25 x 1 x 1 3( x 1) 3 x 1 3x 3 0,25 2x 4 0,25 x 2 .Vậy phương trình đã cho có một nghiệm x = -2 0,25 2) 1,0 điểm x 3 3 3 0 (1) 0,25 Từ (1)=> x 3 3 3 3 x 2 y 11 (2) x=3 0,25 Thay x=3 vào (2)=> 3.3 2 y 11 2y=2 0,25 y=1 . Vậy hệ phương trình đã cho có nghiệm (x;y)=(3;1) 0,25 Câu II (1,0đ) 0,25 1 1 a +1 P= + : a 2- a 2- a a 2 a 1+ a a2 a 0,25 = a (2 a ) a +1 = a a 2 0,25 a 2- a a 2 0,25 = =-1 2- a Câu III Gọi độ dài cạnh góc vuông nhỏ là x (cm) (điều kiện 0< x < 15) 0,25 (1,0đ) => độ dài cạnh góc vuông còn lại là (x + 7 )(cm) Vì chu vi của tam giác là 30cm nên độ dài cạnh huyền là 30–(x + x +7)= 23–2x (cm) Theo định lí Py –ta- go ta có phương trình x 2 + (x + 7) 2 = (23 - 2x) 2 0,25 2 x - 53x + 240 = 0 (1) Giải phương trình (1) được nghiệm x = 5; x = 48 0,25 Đối chiếu với điều kiện có x = 5 (TM đk); x = 48 (không TM đk) 0,25 Vậy độ dài một cạnh góc vuông là 5cm, độ dài cạnh góc vuông còn lại là 12 cm, độ dài cạnh huyền là 30 – (5 + 12) = 13cm Câu IV (2,0đ) 1) 1,0 điểm Vì (d) đi qua điểm A(-1; 3) nên thay x = -1 và y = 3 vào hàm số y = 2x – m + 1 0,25 Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 2
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . ta có 2.(-1) – m +1 = 3 -1 – m = 3 0,25 m = -4 0,25 Vậy m = -4 thì (d) đi qua điểm A(-1; 3) 0,25 2) 1,0 điểm 1 0,25 Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình x 2 2 x m 1 2 2 x 4 x 2m 2 0 (1) ; Để (d) cắt (P) tại hai điểm phân biệt nên (1) có hai 0,25 nghiệm phân biệt ' 0 6 2m 0 m 3 Vì (x1 ; y1) và (x2 ; y2) là tọa độ giao điểm của (d) và (P) nên x1 ; x2 là nghiệm của 0,25 phương trình (1) và y1 = 2 x1 m 1 , y 2 = 2 x2 m 1 Theo hệ thức Vi-et ta có x1 + x 2 = 4, x1x 2 = 2m-2 .Thay y1,y2 vào x1x 2 y1 +y 2 48 0 có x1x 2 2x1 +2x 2 -2m+2 48 0 (2m - 2)(10 - 2m) + 48 = 0 m 2 - 6m - 7 = 0 m=-1(thỏa mãn m OD là đường trung trực của đoạn BC => OFC=900 I (1) F A H O B Có CH // BD (gt), mà AB BD (vì BD là tiếp tuyến của (O)) 0,25 => CH AB => OHC=90 0 (2) 0,25 Từ (1) và (2) ta có OFC + OHC = 1800 => tứ giác CHOF nội tiếp 0,25 3)1,0 điểm Có CH //BD=> HCB=CBD (hai góc ở vị trí so le trong) mà 0,25 ΔBCD cân tại D => CBD DCB nên CB là tia phân giác của HCD AI CI 0,25 do CA CB => CA là tia phân giác góc ngoài đỉnh C của ΔICD = AD CD Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 3
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . (3) AI HI 0,25 Trong ΔABD có HI // BD => = (4) AD BD CI HI 0,25 Từ (3) và (4) => = mà CD=BD CI=HI I là trung điểm của CH CD BD Câu VI Với a 0; b 0 ta có: (a 2 b)2 0 a 4 2a 2b b 2 0 a 4 b 2 2a 2b 0,25 (1,0đ) 1 1 a 4 b 2 2ab 2 2a 2b 2ab2 4 2 2 (1) a b 2ab 2ab a b 1 1 0,25 Tương tự có 4 2 2 (2) . Từ (1) và (2) b a 2a b 2ab a b 1 Q ab a b 1 1 1 1 0,25 Vì 2 a b 2ab mà a b 2 ab ab 1 Q 2 . a b 2(ab) 2 1 1 0,25 Khi a = b = 1 thì Q . Vậy giá trị lớn nhất của biểu thức là 2 2 “Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn học sinh theo học và đạt thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI” - Các em học sinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio Linh,…) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm. - Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớp học từ khối 8 trở xuống, phụ huynh hay học sinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em - Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 – 0533 564384 – 0536 513844 – 0944323844 Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh lớp 10 môn Toán năm 2016-2017 - Sở GD&ĐT An Giang
5 p | 942 | 63
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2016-2017 - Sở GD&ĐT Ninh Thuận
5 p | 409 | 35
-
Đề thi tuyển sinh lớp 10 môn Toán năm 2014-2015 - THPT Chuyên Nguyễn Trãi (Sở GD&ĐT Hải Dương)
6 p | 482 | 23
-
Đề thi tuyển sinh lớp 10 môn Toán năm học 2015-2016 - Sở GD&ĐT Hưng Yên
5 p | 132 | 21
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - THPT Chuyên Lương Văn Chánh (Sở GD&ĐT Phú Yên)
2 p | 313 | 18
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - Sở GD&ĐT Bắc Giang
2 p | 311 | 17
-
Đề thi tuyển sinh lớp 10 môn Toán năm học 2015-2016 - Sở GD&ĐT Tây Ninh
4 p | 189 | 15
-
Đề thi tuyển sinh lớp 10 THPT chuyên Thái Bình môn Toán năm 2019-2020 có đáp án - Sở GD&ĐT Thái Bình (Khối không chuyên)
6 p | 160 | 9
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - Sở GD&ĐT Ninh Thuận
4 p | 193 | 9
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2014-2015 - Sở GD&ĐT Quảng Nam
2 p | 223 | 8
-
Đề thi tuyển sinh lớp 10 PTNK môn Toán năm 2019-2020 - Đại học Quốc gia TP.HCM (Khối chuyên)
1 p | 242 | 6
-
Đề thi tuyển sinh lớp 10 THPT chuyên Thái Bình môn Toán năm 2019-2020 có đáp án - Sở GD&ĐT Thái Bình (Khối chuyên Toán, Tin)
7 p | 143 | 5
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2012-2013 - Sở GD&ĐT Đăk Lăk
7 p | 135 | 4
-
Đề thi tuyển sinh lớp 10 PTNK môn Toán năm 2019-2020 - Đại học Quốc gia TP.HCM (Khối không chuyên)
1 p | 102 | 4
-
Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2019-2020 - Sở GD&ĐT tỉnh Quảng Ninh
1 p | 104 | 4
-
Đề thi tuyển sinh lớp 10 THPT chuyên môn Toán năm học 2020-2021 (Có đáp án)
3 p | 145 | 4
-
Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2019-2020 có đáp án - Sở GD&ĐT Hà Nội
6 p | 155 | 3
-
Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2019-2020 - Sở GD&ĐT Ninh Thuận
1 p | 99 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn