Đề và đáp án thi kiểm tra chất lượng toán khối B và D
lượt xem 90
download
Đề thi chính thức của Sở giáo dục và đào tạo Thanh Hoá - Trường THPT Lê Văn Hưu trong kỳ thi khảo sát chất lượng lớp 12 môn Toán khối B và D năm 2010. Thời gian làm bài 180 phút, không kể thời gian phát đề. Mời các bạn thí sinh cùng tham khảo ôn tập.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề và đáp án thi kiểm tra chất lượng toán khối B và D
- Sở GD & ĐT Thanh Hoá KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12 Trường THPT Lê Văn Hưu MÔN TOÁN KHỐI B và D Tháng 03/2010 ĐỀ CHÍNH THỨC Thời gian:180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) Câu I. (2.0 điểm) Cho hàm số y = (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Câu II. (2.0 điểm) 1. Giải phương trình 2cos6x+2cos4x- 3cos2x = sin2x+ 3 2 1 2 x + x − y = 2 2. Giải hệ phương trình y − y 2 x − 2 y 2 = −2 Câu III. (1.0 điểm) 1 x ∫ ( x sin x + 2 3 Tính tích phân )dx 0 1+ x Câu IV. (1.0 điểm) 1 1 1 Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện + + ≥2 x y z Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1). Câu V. (1.0 điểm) Cho hình chóp S.ABCD đáy ABCD là hình thoi. SA = x (0 < x < ) các cạnh còn lại đều bằng 1. Tính thể tích của hình chóp S.ABCD theo x PHẦN RIÊNG ( 3.0 điểm) Thí sinh chỉ được làm một trong hai phần A hoặc B (Nếu thí sinh làm cả hai phần sẽ không dược chấm điểm). A. Theo chương trình nâng cao Câu VIa. (2.0 điểm) 1. 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy. 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N. Câu VIIa. (1.0 điểm) log 3 ( x + 1) 2 − log 4 ( x + 1)3 Giải bất phương trình >0 x2 − 5x − 6 B. Theo chương trình chuẩn Câu VIb. (2.0 điểm) 1. Cho điểm A(-1 ;0), B(1 ;2) và đường thẳng (d): x - y - 1 = 0. Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng (d). 2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q): x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q). Câu VIIb. (1.0 điểm) x −1 x−2 2 x −3 Giải phương trình C x + 2Cx + C x = Cx + 2 ( Cn là tổ hợp chập k của n phần tử) x k .................HẾT.............. Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm http://kinhhoa.violet.vn
- Họ và tên thí sinh .......................................................... số báo danh.................................................. Sở GD & ĐT Thanh Hoá ĐÁP ÁN KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12 Trường THPT Lê Văn Hưu MÔN TOÁN KHỐI B - D Tháng 03/2010 ĐỀ CHÍNH THỨC Thời gian:180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) CÂU NỘI DUNG THANG ĐIỂM Câu I 0.25 (2.0đ) TXĐ : D = R\{1} 1. Chiều biến thiên 0.25 (1.0đ) lim f ( x) = lim f ( x) = 1 nên y = 1 là tiệm cận ngang của đồ thị hàm số x →+∞ x →−∞ lim f ( x) = +∞, lim = −∞ nên x = 1 là tiệm cận đứng của đồ thị hàm số x →1+ − x →1 1 y’ = − 0) ta có f’(t) = 1+ t4 (1 + t 4 ) 1 + t 4 http://kinhhoa.violet.vn
- f’(t) = 0 khi t = 1 0.25 Bảng biến thiên x 0 1 +∞ từ bảng biến thiên ta c + 0 - d(I ;tt) lớn nhất f'(t) ) khi và chỉ khi t = 1 hay f(t) ) 2 x0 = 2 x0 − 1 = 1 ⇔ x0 = 0 + Với x0 = 0 ta có tiếp tuyến là y = -x 0.25 + Với x0 = 2 ta có tiếp tuyến là y = -x+4 Câu 4cos5xcosx = 2sinxcosx + 2 3 cos2x 0.25 II(2.0đ) 0.25 cos x=0 1. ⇔ (1.0đ) 2cos5x =sinx+ 3 cos x cos x = 0 0.25 ⇔ cos5x=cos(x- π ) 6 π 0.25 x = + kπ 2 π kπ ⇔ x = − + 24 2 x = π + k 2π 42 7 2. ĐK : y ≠ 0 0.5 (1.0đ) 2 1 2 x + x − y − 2 = 0 2u 2 + u − v − 2 = 0 hệ ⇔ đưa hệ về dạng 2 2 + 1 − x−2=0 2v + v − u − 2 = 0 y2 y 0.5 u = v u = v = 1 ⇔ u = 1 − v ⇔ u = v = −1 Từ đó ta có nghiệm của hệ 2 2v + v − u − 2 = 0 3− 7 3+ 7 u = 2 u = 2 , −1 + 7 v = −1 − 7 v = 2 2 3− 7 2 3+ 7 2 (-1 ;-1),(1 ;1), ( ; ), ( ; ) 2 7 −1 2 7 +1 Câu III. 1 1 x 0.25 (1.0đ) I = ∫ x sin x dx + ∫ 2 3 dx 0 0 1+ x http://kinhhoa.violet.vn
- 1 0.25 ∫x 2 Ta tính I1 = sin x 3dx đặt t = x3 ta tính được I1 = -1/3(cos1 - sin1) 0 1 x 1 1 π π 0.25 Ta tính I2 = ∫ dx đặt t = x ta tính được I2 = 2 ∫ (1 − )dt = 2(1 − ) = 2 − 0 1+ x 0 1+ t 2 4 2 π 0.25 Từ đó ta có I = I1 + I2 = -1/3(cos1 - 1)+ 2 − 2 1 1 1 0.25 Câu IV. Ta có x + y + z ≥ 2 nên (1.0đ) 0.25 1 1 1 y −1 z −1 ( y − 1)( z − 1) ≥ 1− +1− = + ≥2 (1) x y z y z yz 1 1 1 x −1 z −1 ( x − 1)( z − 1) Tương tự ta có ≥ 1− +1− = + ≥2 (2) y x z x z xz 1 1 1 x −1 y −1 ( x − 1)( y − 1) ≥ 1− +1− = + ≥2 (3) y x y x y xy 1 0.25 Nhân vế với vế của (1), (2), (3) ta được ( x − 1)( y − 1)( z − 1) ≤ 8 0.25 1 3 vậy Amax = ⇔ x = y = z = 8 2 Câu V. 0.5 (1.0đ) Ta có ∆SBD = ∆DCB (c.c.c) ⇒ SO = CO S Tương tự ta có SO = OA vậy tam giác SCA vuông tại S. ⇒ CA = 1 + x 2 Mặt khác ta có AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2 C D ⇒ BD = 3 − x 2 (do 0 < x < 3) H 1 ⇒ S ABCD = 1 + x2 3 − x2 O 4 B A Gọi H là hình chiếu của S xuống (CAB) 0.25 Vì SB = SD nên HB = HD ⇒ H ∈ CO 1 1 1 x 0.25 Mà 2 = 2 + 2 ⇒ SH = SH SC SA 1 + x2 1 Vậy V = x 3 − x (dvtt) 2 6 Câu 0.5 VIa. Gọi A là giao điểm d1 và d2 ta có A(3 ;0) (2.0đ) Gọi B là giao điểm d1 với trục Oy ta có B(0 ; - 4) 1. Gọi C là giao điểm d2 với Oy ta có C(0 ;4) (1.0đ) 0.5 Gọi BI là đường phân giác trong góc B với I thuộc OA khi đó ta có http://kinhhoa.violet.vn
- I(4/3 ; 0), R = 4/3 Y D' ' A' ' 2. 1.0 (1.0đ) Chọn hệ trục toạ độ như hình vẽ Ta có M(1 ;0 ;0), N(0 ;1 ;1) C' ' B(2 ;0 ;2), C’(0 ;2 ;2) B' ' Gọi phương tình mặt cầu đi qua 4 điểm M,N,B,C’ có dạng N x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0 Vì mặt cầu đi qua 4 điểm nên ta có M 5 D A A = − 2 X 1 + 2 A + D = 0 2 + 2 B + 2C + D = 0 5 B = − ⇔ 2 C B 8 + 4 A + 4C + D = 0 1 Z 8 + 4 B + 4C + D = 0 C = − 2 D = 4 Vậy bán kính R = A2 + B 2 + C 2 − D = 15 Câu Đk: x > - 1 0.25 VIIa (1.0đ) 3log 3 ( x + 1) 0.25 2 log 3 ( x + 1) − bất phương trình log 3 4 ⇔ >0 ( x + 1)( x − 6) log 3 ( x + 1) ⇔
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề và đáp án thi thử đại học môn hóa lần 6 Chuyên Sư Phạm Hà Nội
6 p | 574 | 107
-
Đề và đáp án thi thử đại học lần 1 chuyên Amsterdam
7 p | 1593 | 84
-
Đề và đáp án thi thử đại học môn hóa lần 4 Chuyên Nguyễn Huệ
8 p | 629 | 84
-
Đề và đáp án thi thử đại học môn hóa lần 2 Chuyên DH Vinh
6 p | 621 | 79
-
Đề và đáp án thi thử đại học môn hóa lần 5 Chuyên ĐHKHTN
4 p | 322 | 79
-
Đề và đáp án thi thử đại học môn hóa Chuyên Phan Bội Châu
9 p | 260 | 68
-
Đề và đáp án thi thử đại học môn hóa lần 4 Chuyên Vĩnh Phúc
6 p | 211 | 53
-
Đề và đáp án thi thử đại học môn hóa Chuyên Tuyên Quang
14 p | 247 | 50
-
Đề và đáp án thi thử đại học môn hóa lần 3 Chuyên Vĩnh Phúc
5 p | 240 | 39
-
Đề và đáp án thi thử đại học môn hóa lần 3 Chuyên Yên Định
4 p | 292 | 36
-
Đề và đáp án thi thử đại học môn hóa lần 1 Chuyên Long An
7 p | 289 | 35
-
4 Đề và đáp án Toán 6 Lương Thế Vinh 2011
18 p | 263 | 33
-
Đề và đáp án thi thử tốt nghiệp trường THPT Gia Hội
6 p | 147 | 28
-
Một số đề và đáp án thi học kì II môn Vật lý lớp 9 - UBND huyện Krong Buk
9 p | 139 | 23
-
Đề và đáp án thi kiểm tra học kì I môn Vật lý lớp 11 năm học 2007 -2008
4 p | 81 | 15
-
Đề và đáp án thi học kì II môn Vật lý lớp 10 năm học 2009 - 2010 - Trường THPT Phạm Thái Bường
5 p | 86 | 9
-
29 đề và đáp án thi vào 10 môn Văn năm 2018 - 2019
89 p | 90 | 9
-
Đề và đáp án thi kiểm tra học kì II môn Vật lý lớp 9 năm học 2012 -2013 - Phòng GD & ĐT Huyện Mèo Vạc - Trường THCS PTDTBT Sủng Trà
5 p | 89 | 6
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn