Điều khiển tự động - Chương 7
lượt xem 67
download
Khảo sát ổn định hệ gián đọan. I. Hàm truyền đạt của hệ gián đọan 1. Xác định theo phương trình sai phân Quan hệ giữa tín hiệu ngõ vào và ngõ ra như sau anc(k+n) + an-1c(k+n-1)+ … + a0c(k) = bmr(k+m) + bm-1r(k+m-1)+ … + b0r(k) Biến đổi z và áp dụng tính chất dời trong miền thời gian .
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Điều khiển tự động - Chương 7
- Chương 7. Khảo sát ổn định hệ gián đọan. I. Hàm truyền đạt của hệ gián đọan 1. Xác định theo phương trình sai phân Quan hệ giữa tín hiệu ngõ vào và ngõ ra như sau anc(k+n) + an-1c(k+n-1)+ … + a0c(k) = bmr(k+m) + bm-1r(k+m-1)+ … + b0r(k) Biến đổi z và áp dụng tính chất dời trong miền thời gian (anzn + an-1zn-1 + … + a0)C(z) = (bmzm + bm-1zm-1 + … + b0) R(z) hay C ( z ) bm z m + bm−1 z m−1 + ... + b0 = R ( z ) an z n + an −1 z n −1 + ... + a0 Và PTĐT là F(z) = anzn + an-1zn-1 + … + a0 = 0 Điều khiển tự động 1
- Chương 7. Khảo sát ổn định hệ gián đọan. 2. Đại số sơ đồ phép biến đổi z + Nối tiếp các phần tử: - Hai khâu nối tiếp cách nhau bởi khâu lấy mẫu R*(p) C1*(p) R(p) C*(p) G1(p) G2(p) C ( z ) C ( z ) C1 ( z ) Hàm truyền = . = G1 ( z ).G2 ( z ) R ( z ) C1 ( z ) R ( z ) Trong đó : G1(z) = Z {G1(p)} và G2(z) = Z {G1(p)} Điều khiển tự động 2
- Chương 7. Khảo sát ổn định hệ gián đọan. - Hai khâu nối tiếp không cách nhau bởi khâu lấy mẫu R*(p) R(p) C*(p) G1(p) G2(p) C ( z) Hàm truyền = Z { G1 ( s ).G2 ( s )} = G1G2 ( z ) R( z ) Trong đó : G1G2(z) = Z {G1(p).G2(p)} Lưu ý : G1G2 (z) ≠ G1(z).G2(z). Điều khiển tự động 3
- Chương 7. Khảo sát ổn định hệ gián đọan. + Khâu hồi tiếp. - Khâu hồi tiếp có khâu lấy mẫu trong kênh sai số R(p) E(p) E*(p) C(p) T G(p) - H(p) Ta có : E(p) = R(p) – G(p).H(p).E*(p) Rời rạc hóa E(p), vì khâu lấy mẫu là phần tử tuyến tính nên : E*(p) = R*(p) – GH*(p).E*(p) R * ( p) E * ( p) = 1 + GH * ( p ) Điều khiển tự động 4
- Chương 7. Khảo sát ổn định hệ gián đọan. G ( p ).R * ( p) C ( p ) = E * ( p).G ( p ) = 1 + GH * ( p ) Thực hiện phép biến đổi z ta có G ( z ).R ( z ) C ( z) = 1 + GH ( z ) Với GH(z) = Z{G(p).H(p)} Điều khiển tự động 5
- Chương 7. Khảo sát ổn định hệ gián đọan. 3. Xác định hàm truyền đạt của hệ rời rạc theo hàm truyền đạt của hệ liên tục Cho một hệ thống điều khiển kín như sau R(p) E(p) C(p) T ZOH G(p) - H(p) 1 − e − pT ZOH là khâu giữ bậc 0 với : GZOH ( p ) = p Hàm truyền của hệ liên tục C ( p) GZOH ( p ).G ( p ) M ( p) = = R ( p ) 1 + GZOH ( p ).G ( p ).H ( p ) Điều khiển tự động 6
- Chương 7. Khảo sát ổn định hệ gián đọan. Hàm truyền của hệ gián đọan Z { GZOH ( p).G ( p )} M ( z ) = Z { M ( p )} = 1 + Z { GZOH ( p ).G ( p ).H ( p )} Với: 1 − e − pT Z { GZOH ( p ).G ( p )} = Z ( ) G ( p ) .G ( p ) = 1 − z −1 .Z p p 1 − e − pT Z { GZOH ( p ).G ( p ).H ( p )} = Z .G ( p ).H ( p ) p ( ) G ( p ) H ( p ) = 1 − z −1 .Z p Điều khiển tự động 7
- Chương 7. Khảo sát ổn định hệ gián đọan. II. Ổn định của hệ gián đọan 1. Điều kiện ổn định trong mặt phẳng z + Trong mặt phẳng phức : Re(p)
- Chương 7. Khảo sát ổn định hệ gián đọan. z = eTp TMP Im(p) Im(z) Vòng tròn đơn vị j Re(p) Re(z) -1 1 -j Mặt phẳng phức Mặt phẳng z Điều khiển tự động 9
- Chương 7. Khảo sát ổn định hệ gián đọan. 2. Các tiêu chuẩn ổn định a. Tiêu chuẩn Routh Hurwith cải tiến + Tiêu chuẩn Routh (Hurwitz) : xét nghiệm nằm bên trái hay bên phải mặt phẳng phức Muốn áp dụng tiêu chuẩn Routh (Hurwitz) thì phải biến miền bên trong của vòng tròn đơn vị thành bên trái mặt phẳng z Phép biến đổi song tính z '+1 z +1 z= hay z' = z '−1 z −1 Tiêu chuẩn Routh (Hurwitz) được áp dụng đối với phương trình đặc trưng đã được biến đổi F(z’) = 0 Điều khiển tự động 10
- Chương 7. Khảo sát ổn định hệ gián đọan. b. Tiêu chuẩn Jury Cho phương trình đặc trưng: F(z) = anzn + an-1zn-1 + … + a0 = 0 Bảng Jury được thiết lập như sau + Hàng 1 là các hệ số của phương trình đặc trưng theo thứ tự chỉ số giảm dần + Hàng chẵn bất kỳ gồm các hệ số của hàng lẻ ngay trước đó viết theo thứ tự ngược lại + Hàng lẻ thứ i = 2k+1 gồm có (n-k+1) phần tử, phần tử cij được xác định bởi công thức c c 1 i −2,1 i −2,n − j− k +3 cij = ci−2,1 ci−1,1 ci−1,n − j−k +3 Tiêu chuẩn Jury : Điều kiện cần và đủ để hệ thống ổn định là tất cả các hệ số ở hàng lẻ, cột 1 của bảng Jury đều dương Điều khiển tự động 11
- Chương 7. Khảo sát ổn định hệ gián đọan. c. Phân tích ổn định dùng giản đồ Bode Thực hiện phép biến đổi song tuyến tính 2 z −1 1 + (T / 2) w w= hay z= T z +1 1 − (T / 2) w Thực hiện các phép biến đổi: G(p) G(z) G(w) ta thay w = jv và được G(jv) Vẽ giản đồ Bode với G(jv) và áp dụng tiêu chuẩn ổn định dung giản đồ bode như trong hệ tuyến tính liên tục. (PDT >0 và BDT >0) Điều khiển tự động 12
- Chương 7. Khảo sát ổn định hệ gián đọan. d. Ổn định dùng Quỹ đạo nghiệm Cách vẽ quỹ đạo nghiệm tương tự như vẽ quỹ đạo nghiệm của hệ tuyến tính liên tục với thời gian lấy mẫu T Điều khác biệt giữa hai hệ thống là miền ổn định Trong hệ liên tục tuyến tính thì miền ổn định là TMP Còn trong hệ gián đọan là vòng tròn đơn vị III. Chất lượng hệ thống rời rạc. 1. Đáp ứng quá độ: ngõ ra c(k) khi k = 0 .. ∞ Sử dụng các phương pháp biến đổi z ngược đã giới thiệu trong chương 6. Điều khiển tự động 13
- Chương 7. Khảo sát ổn định hệ gián đọan. 2. Cặp cực quyết định: Là cặp cực gần vòng tròn đơn vị nhất. Đối với hệ bậc cao thì có thể xấp xỉ bằng hệ bậc 2 với 2 cực là cặp cực quyết định. Giả sử cặp cực quyết định của hệ rời rạc có dạng: z = r.e± jϕ Sử dụng định nghĩa về phép biến đổi z: z = eTp ta suy ra được cặp nghiệm p1,2 là: ln(r) ± j.ϕ = T.p lnr ϕ 2 p= ± j. = −δ ωn ± jωn 1 − δ T T − lnr 1 δ= ωn = ( lnr) 2 + ϕ2 ( lnr) 2 + ϕ2 T Các công thức tính thời gian quá độ, độ vọt lố… đối với hệ bậc hai sử dụng tương tự như trong hệ tuyến tính liên tục. ( Sai số xác lập: exl = lim e(k) = lim1 − z E(z) k→∞ z→1 −1 ) Điều khiển tự động 14
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Cơ sở lý thuyết điều khiển tự động part 7
22 p | 352 | 167
-
Bài giảng lý thuyết điều khiển tự động - Khảo sát tính ổn định của hệ thống part 7
10 p | 511 | 124
-
Giáo trình lý thuyết kỹ thuật điều khiển tự động 7
19 p | 212 | 88
-
Bài tập Cơ Điện Tử - Điều khiển đèn giao thông
19 p | 307 | 72
-
Bài giảng lý thuyết điều khiển tự động - Mô tả toán học hệ thống điều khiển rời rạc part 7
5 p | 199 | 65
-
Tự thiết kế, lắp ráp 23 mạch điện thông minh – chuyên về điều khiển tự động part 7
17 p | 170 | 58
-
Giáo trình Thí nghiệm điều khiển tự động: Phần 2
118 p | 153 | 51
-
Bài giảng lý thuyết điều khiển tự động - Khảo sát tính ổn định của hệ thống part 2
10 p | 158 | 44
-
Bài giảng lý thuyết điều khiển tự động - Mô hình toán học, hệ thống điều khiển liên tục part 7
10 p | 138 | 33
-
GIÁO TRÌNH ĐIỀU KHIỂN SỐ_CHƯƠNG 7
0 p | 116 | 20
-
Khảo sát ứng dụng MATLAB trong điều khiển tự động - Phần 7
24 p | 113 | 17
-
Bài giảng lý thuyết điều khiển tự động - Phân tích và thiết kế hệ thống điều khiển rời rạc part 7
9 p | 86 | 16
-
Bài giảng lý thuyết điều khiển tự động - Thiết kế hệ thống điều khiển liên tục part 7
8 p | 100 | 16
-
Giáo trình môn điều khiển số 7
7 p | 88 | 12
-
Bài giảng lý thuyết điều khiển tự động - Đánh giá chất lượng hệ thống điều khiển part 7
5 p | 79 | 9
-
Bài giảng lý thuyết điều khiển tự động - Hệ thống điều khiển phi tuyến part 7
8 p | 71 | 5
-
Bài giảng Thực hành điều khiển thiết bị điện - Bài 7: Tổng hợp hệ thống điều khiển tự động
8 p | 57 | 4
-
Bài giảng Lý thuyết điều khiển tự động: Bài 7 - ThS. Đỗ Tú Anh
15 p | 24 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn