’<br />
Tap ch´ Tin hoc v` Diˆu khiˆ n hoc, T.23, S.1 (2007), 39—49<br />
ı<br />
e<br />
e<br />
.<br />
. a `<br />
.<br />
<br />
.<br />
.<br />
’<br />
´<br />
´<br />
’.<br />
’. `<br />
´<br />
ˆ<br />
ˆ<br />
GIAI PHAP KET HO P SU DUNG DAI SO GIA TU VA MANG NO RON RBF<br />
.<br />
.<br />
.<br />
.<br />
’<br />
`<br />
’<br />
´<br />
ˆ<br />
ˆ<br />
`.<br />
ˆ<br />
ˆ<br />
`<br />
´<br />
TRONG VIEC GIAI QUYET BAI TOAN DIEU KHIEN MO<br />
.<br />
˜<br />
`<br />
ˆ<br />
´<br />
ˆ<br />
`<br />
NGUYEN CAT HO1 , PHAM THANH HA2<br />
.<br />
1 Viˆn<br />
e<br />
<br />
.<br />
<br />
Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br />
o<br />
e o<br />
e<br />
e e<br />
.<br />
.<br />
. a o<br />
.<br />
.<br />
2 Tru.`.ng Dai hoc Giao thˆng Vˆn ta i H` Nˆi<br />
’ a o<br />
o<br />
a<br />
o<br />
. .<br />
.<br />
.<br />
<br />
Abstract. In the last few years, thanks to the development of the Fuzzy logic theory and Hedge<br />
algebra, more complex Fuzzy control problems were solved. In this papers, we will present the solution<br />
that uses combination between Hedge Algebra and RBF neural network in the Fuzzy control method.<br />
’ ’ y<br />
´<br />
`<br />
´ .<br />
´<br />
’<br />
a<br />
a a u<br />
a<br />
e<br />
e a<br />
o a . o<br />
T´m t˘t. Trong nh˜.ng n˘m gˆn dˆy c`ng v´.i su. ph´t triˆ n cua l´ thuyˆt tˆp m`. v` dai sˆ gia tu.,<br />
o<br />
a<br />
u<br />
o .<br />
’n m`. ph´.c tap d˜ du.o.c giai quyˆt th`nh cˆng, tiˆp tuc vˆ n dˆ n`y ch´ ng<br />
`<br />
`<br />
´<br />
´<br />
´ e<br />
’<br />
e<br />
e<br />
o<br />
a<br />
u<br />
nhiˆu b`i to´n diˆu khiˆ<br />
e a<br />
a<br />
u .<br />
e<br />
a<br />
o<br />
e . a ` a<br />
.<br />
’<br />
´<br />
´<br />
´<br />
´<br />
’<br />
’ .<br />
’ a .<br />
tˆi dˆ xuˆ t giai ph´p kˆt ho.p su. dung dai sˆ gia tu. v` mang no.ron RBF dˆ giai quyˆt c´c b`i to´n<br />
o `<br />
e a<br />
a e .<br />
o<br />
e ’<br />
e a a<br />
a<br />
.<br />
’<br />
` u khiˆ n m`..<br />
diˆ<br />
e<br />
e<br />
o<br />
<br />
´<br />
˘<br />
ˆ<br />
ˆ<br />
DAT VAN D`<br />
E<br />
.<br />
´<br />
´<br />
’ a ’ .<br />
’<br />
a a<br />
Trong mˆt sˆ nghiˆn c´.u gˆn dˆy ([9, 10]) c´c t´c gia d˜ su. dung cˆ u tr´c dai sˆ gia tu.<br />
o o<br />
e u `<br />
a a<br />
a<br />
u . o<br />
. ´<br />
’<br />
’<br />
˜ a `<br />
` m biˆu diˆn miˆn gi´ tri cua c´c biˆn ngˆn ng˜., theo d´ mˆi luˆt diˆu khiˆn m`. tu.o.ng<br />
˜<br />
`<br />
´<br />
’ a<br />
o o<br />
e<br />
e<br />
o<br />
nh˘<br />
a<br />
e<br />
e<br />
e<br />
a .<br />
e<br />
o<br />
u<br />
.<br />
’<br />
`<br />
`<br />
’ .<br />
u.ng v´.i mˆt diˆ m thu.c trong khˆng gian n + 1 chiˆu, b˘ ng c´ch su. dung c´c ph´p t´ ho.p<br />
´<br />
o<br />
o<br />
o<br />
a<br />
e ıch .<br />
e<br />
e<br />
a<br />
a<br />
.<br />
.<br />
’<br />
` o<br />
`<br />
nhu. AND=PRODUCT ho˘c AND=MIN c´c diˆm trˆn du.o.c du.a vˆ khˆng gian 2 chiˆu, nh`.<br />
a<br />
a<br />
e<br />
e<br />
o<br />
e<br />
e<br />
.<br />
.<br />
. so. c´c diˆ m n`y, du.`.ng cong ng˜. ngh˜a dinh lu.o.ng du.o.c x´c dinh v`<br />
’<br />
’ a<br />
e<br />
a<br />
a<br />
ph´p nˆi suy trˆn co<br />
e o<br />
e<br />
o<br />
u<br />
ı .<br />
.<br />
.<br />
. a .<br />
’<br />
´<br />
’ `<br />
kˆt qua diˆu khiˆ n du.o.c x´c dinh du.a trˆn du.`.ng cong. Tuy nhiˆn viˆc su. dung c´c ph´p<br />
e<br />
a .<br />
e<br />
o<br />
e<br />
e ’ .<br />
a<br />
e<br />
e<br />
e<br />
.<br />
.<br />
.<br />
’<br />
’<br />
t´ ho.p nhu. AND=PRODUCT ho˘c AND=MIN dˆ du.a mˆt diˆm trong khˆng gian n + 1<br />
ıch .<br />
a<br />
o<br />
e<br />
e<br />
o<br />
.<br />
.<br />
’<br />
’<br />
˜ a<br />
` u vˆ mˆt diˆ m trong khˆng gian 2 chiˆu dˆ gˆy mˆt m´t nhiˆu thˆng tin. Dˆ g´p phˆn<br />
` o<br />
`<br />
´ a<br />
`<br />
`<br />
chiˆ e .<br />
e<br />
e<br />
o<br />
e e<br />
a<br />
e<br />
o<br />
e o<br />
a<br />
.p su. dung dai sˆ gia tu. v`<br />
´<br />
´<br />
´<br />
´<br />
´ ´ e<br />
’<br />
’<br />
’ a<br />
u<br />
o e . `<br />
e a<br />
a e .<br />
o<br />
giai quyˆt vˆ n dˆ trˆn ch´ng tˆi tiˆp tuc dˆ xuˆ t giai ph´p kˆt ho ’ .<br />
e a ` e<br />
.<br />
’<br />
o<br />
a `<br />
e<br />
e<br />
o<br />
mang no.ron nˆi suy RBF trong phu.o.ng ph´p diˆu khiˆn m`..<br />
.<br />
.<br />
’<br />
`<br />
`<br />
´<br />
e<br />
a<br />
e<br />
e<br />
o<br />
Cˆ u tr´c cua b`i b´o gˆ m 5 muc, Muc 1 gi´.i thiˆu phu.o.ng ph´p diˆu khiˆn m`., Muc 2<br />
a<br />
u ’ a a o<br />
o<br />
.<br />
.<br />
.<br />
.<br />
’<br />
` . o<br />
´<br />
´<br />
’ a<br />
’<br />
gi´.i thiˆu so. lu.o.c vˆ dai sˆ gia tu. v` phu.o.ng ph´p diˆu khiˆn m`. su. dung dai sˆ gia tu., Muc<br />
o<br />
e<br />
e<br />
a `<br />
e<br />
e<br />
o ’ .<br />
o<br />
.<br />
.<br />
.<br />
.<br />
’ ´<br />
´<br />
’ .<br />
’ a .<br />
3 ch´ng tˆi dˆ xuˆ t phu.o.ng ph´p diˆu khiˆn kˆt ho.p su. dung gia tu. v` mang nˆi suy RBF,<br />
u<br />
o `<br />
a `<br />
o<br />
e a<br />
e<br />
e e .<br />
.<br />
´ a a<br />
Muc 4 l` v´ du minh hoa v` Muc 5 l` kˆt luˆn d´nh gi´ giai ph´p.<br />
a ı .<br />
a e<br />
a ’<br />
a<br />
.<br />
. a .<br />
.<br />
. .<br />
’<br />
´<br />
ˆ<br />
ˆ<br />
`.<br />
1. PHU O NG PHAP DI` U KHIEN MO<br />
E<br />
´ .<br />
´<br />
’ y<br />
’<br />
e a<br />
o u u<br />
a<br />
e ’<br />
o<br />
a<br />
a a<br />
Trˆn co. so. l´ thuyˆt tˆp m`., t`. nh˜.ng n˘m 70 cua thˆ ky tru.´.c, c´c phu.o.ng ph´p lˆp<br />
e<br />
.<br />
.o.c ph´t triˆn manh m˜ v` c´ nh˜.ng u.ng dung thu.c tiˆn quan trong. Mˆt<br />
’<br />
˜<br />
´<br />
luˆn xˆ p xı d˜ du .<br />
a a ’ a<br />
a<br />
e<br />
e a o u ´<br />
e<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´ trong nh˜.ng phu.o.ng ph´p lˆp, d´ l` c´c phu.o.ng ph´p lˆp luˆn m`. da diˆu kiˆn viˆt t˘t l`<br />
`<br />
´ a a<br />
sˆ<br />
o<br />
u<br />
a a<br />
a a<br />
a<br />
o<br />
o a a<br />
e<br />
e<br />
e<br />
.<br />
.<br />
.<br />
.<br />
’<br />
ınh a `<br />
e ’<br />
phu.o.ng ph´p FMCR (Fuzzy Multiple Conditional Reasoning) v` dˆy ch´ l` nˆn tang cua<br />
a<br />
a a<br />
<br />
˜<br />
`<br />
ˆ<br />
´<br />
ˆ<br />
`<br />
NGUYEN CAT HO, PHAM THANH HA<br />
.<br />
<br />
40<br />
<br />
’<br />
a `<br />
phu.o.ng ph´p diˆu khiˆn m`..<br />
e<br />
e<br />
o<br />
.o.ng ph´p lˆp luˆn n`y du.a trˆn tˆp c´c mˆnh dˆ dang if-then nhu. sau:<br />
` .<br />
a a<br />
a a<br />
e a a<br />
e<br />
Phu<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
If X1 = A11 and ... and Xm = A1m then Y = B1<br />
If X1 = A21 and ... and Xm = A2m then Y = B2<br />
...<br />
<br />
(1)<br />
<br />
If X1 = An1 and ... and Xm = Anm then Y = Bn<br />
’<br />
u o<br />
u o ’ a .<br />
trong d´ Aij v` Bi , i = 1, ..., n, j = 1, ..., m, l` nh˜.ng t`. ngˆn ng˜. mˆ ta c´c dai lu.o.ng cua<br />
o<br />
a<br />
a u<br />
.<br />
. Xj v` Y.<br />
´<br />
biˆn ngˆn ng˜<br />
e<br />
o<br />
u<br />
a<br />
.o.c goi l` mˆ h` m`. ngo`i ra n´ c`n du.o.c goi l` bˆ nh´. m`. liˆn ho.p (Fuzzy<br />
a<br />
o o<br />
o o e<br />
(1) du .<br />
. a o ınh o<br />
.<br />
. a o<br />
.<br />
.<br />
’<br />
˜<br />
Associate Memory (FAM)) v` n´ biˆ u diˆn tri th´.c cua chuyˆn gia trong l˜ vu.c u.ng dung<br />
ı o e<br />
e<br />
u ’<br />
e<br />
ınh . ´<br />
.<br />
e<br />
n`o d´ dang du.o.c x´t.<br />
a o<br />
.<br />
’<br />
B`i to´n lˆp luˆn m`. du.o.c ph´t biˆ u nhu. sau: Cho tru.´.c mˆ h` m`. o. dang (1). Khi<br />
a a a<br />
a<br />
o<br />
a<br />
e<br />
o<br />
o ınh o ’ .<br />
.<br />
.<br />
.<br />
.ng v´.i c´c gi´ tri (ho˘c gi´ tri m`., ho˘c gi´ tri thu.c) cua c´c biˆn dˆu v`o d˜ cho, h˜y<br />
´ a a a<br />
’ a<br />
o a<br />
a .<br />
a<br />
a . o<br />
a<br />
a . .<br />
e `<br />
d´ u<br />
o´<br />
a<br />
.<br />
.<br />
´<br />
’<br />
t´ gi´ tri dˆu ra cua biˆn Y.<br />
ınh a . `<br />
a<br />
e<br />
´ .<br />
´ .<br />
`<br />
e a<br />
e a ’ y<br />
e a<br />
o a<br />
a a<br />
a<br />
o<br />
Du.a trˆn c´ch tiˆp cˆn cua l´ thuyˆt tˆp m`., c´c phu.o.ng ph´p lˆp luˆn m`. da diˆu kiˆn<br />
e<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.a trˆn y tu.o.ng sau: Ng˜. ngh˜ cua c´c gi´ tri ngˆn ng˜. cua c´c biˆn ngˆn ng˜.<br />
´<br />
n´i chung du<br />
o<br />
ıa ’ a<br />
a . o<br />
u ’ a<br />
e<br />
o<br />
u<br />
u<br />
e ´ ’<br />
.<br />
’<br />
˜<br />
`<br />
trong mˆ h` m`. du.o.c biˆ u thi b˘ ng c´c tˆp m`., khi d´ mˆ i mˆ h` m`. s˜ du.o.c mˆ phong<br />
o ınh o<br />
e<br />
a<br />
a a<br />
o<br />
o ’<br />
o o o ınh o e<br />
.<br />
.<br />
.<br />
.<br />
`<br />
o<br />
b˘ ng mˆt quan hˆ m`. hai ngˆi R.<br />
a<br />
o<br />
e o<br />
.<br />
.<br />
`<br />
´ a<br />
Khi d´ u.ng v´.i vecto. dˆu v`o A0 , gi´ tri cua biˆn dˆu ra du.o.c t´nh theo cˆng th´.c<br />
o<br />
o<br />
u<br />
o ´<br />
a<br />
a<br />
a . ’<br />
e `<br />
. ı<br />
´t nhˆp (Aggreegation operator).<br />
B0 = A0 ∗ R, trong d´ ∗ l` mˆt ph´p kˆ<br />
o a o<br />
e e<br />
a<br />
.<br />
.<br />
´<br />
’<br />
’<br />
Tuy y tu.o.ng chung l` giˆng nhau, nhu.ng nh˜.ng phu.o.ng ph´p lˆp luˆn s˜ kh´c nhau o.<br />
´<br />
a o<br />
u<br />
a a<br />
a e a<br />
.<br />
.<br />
.c mˆ phong mˆ h` m`. v` c´ch x´c dinh ph´p t´ kˆt nhˆp ([7, 8]).<br />
´<br />
’<br />
o<br />
o ınh o a a<br />
a .<br />
e ınh e<br />
a<br />
c´nh th´<br />
a<br />
u<br />
.<br />
.o.ng ph´p lˆp luˆn m`. n´i chung phu thuˆc nhiˆu yˆu tˆ rˆ t c˘n ban<br />
`<br />
´ ´ ´<br />
’<br />
’ ’<br />
a a<br />
a<br />
o o<br />
o<br />
e e o a a<br />
Hiˆu qua cua phu<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’ ng han nhu. lu.a chon tˆp m`. (b`i to´n xˆy du.ng c´c h`m thuˆc), xˆy du.ng quan hˆ m`.<br />
ch˘<br />
a<br />
o a a a<br />
a a<br />
o<br />
a<br />
e o<br />
.<br />
.<br />
. a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´ o ınh o<br />
´<br />
’<br />
mˆ phong tˆt nhˆ t mˆ h` m`. (tri th´.c) v` b`i to´n lu.a chon ph´p kˆt nhˆp,... Dˆy l` mˆt<br />
o<br />
o<br />
a<br />
u<br />
a a a .<br />
e e<br />
a<br />
a a o<br />
.<br />
.<br />
.<br />
`<br />
’<br />
’ a a a<br />
kh´ kh˘n khˆng nho khi xˆy du.ng phu.o.ng ph´p giai b`i to´n lˆp luˆn m`. da diˆu kiˆn.<br />
o a<br />
o<br />
a<br />
a<br />
a<br />
o<br />
e<br />
e<br />
.<br />
.<br />
.<br />
.<br />
. .<br />
’<br />
’. `<br />
´<br />
´<br />
ˆ<br />
ˆ<br />
ˆ<br />
`.<br />
2. DAI SO GIA TU VA PHU O NG PHAP DI` U KHIEN MO<br />
E<br />
.<br />
.<br />
.<br />
´<br />
’<br />
’<br />
ˆ<br />
SU DUNG DAI SO GIA TU<br />
.<br />
.<br />
´<br />
´<br />
’ ’<br />
e<br />
o<br />
u<br />
2.1. Dai sˆ gia tu. cua biˆn ngˆn ng˜.<br />
. o<br />
´<br />
´<br />
’ ’<br />
’<br />
Gia su. X l` mˆt biˆn ngˆn ng˜. v` miˆn gi´ tri cua X l` Dom(X). Mˆt dai sˆ gia tu. AX<br />
a o e<br />
o<br />
u a `<br />
a<br />
o . o<br />
e<br />
a . ’<br />
.<br />
.<br />
.o.ng u.ng cua X l` mˆt bˆ 4 th`nh phˆn AX = (Dom(X), C, H, ) trong d´ C l` tˆp c´c<br />
`<br />
’<br />
´<br />
tu<br />
a o o<br />
a<br />
a<br />
o<br />
a a a<br />
. .<br />
.<br />
`<br />
’ a<br />
a a a<br />
a<br />
e ’<br />
u<br />
ı<br />
phˆn tu. sinh, H l` tˆp c´c gia tu. v` quan hˆ “ ” l` quan hˆ cam sinh ng˜. ngh˜ trˆn X . V´<br />
a ’<br />
e<br />
ıa e<br />
.<br />
.<br />
.<br />
. X l` tˆc dˆ quay cua mˆt mˆ to. th` Dom(X) = {fast, very fast, possible fast, very<br />
´ .<br />
’<br />
du nhu<br />
ı<br />
a o o<br />
o<br />
o<br />
.<br />
.<br />
´<br />
`<br />
slow, low...} ∪ {0, 1, W }, C = {f ast, slow, 0, 1, W }, v´.i 0, 1, W l` phˆn tu. b´ nhˆ t, phˆn tu.<br />
a ’<br />
o<br />
a `<br />
a ’ e a<br />
.n nhˆ t v` phˆn tu. trung h`a tu.o.ng u.ng, H = {very, more, possible, little}.<br />
´<br />
l´<br />
o<br />
o<br />
a a `<br />
a ’<br />
´<br />
´<br />
´<br />
´<br />
’<br />
e<br />
Trong dai sˆ gia tu. AX = (Dom(X), C, H, ) nˆu Dom(X) v` C l` tˆp s˘p th´. tu. tuyˆn<br />
e<br />
a<br />
a a a<br />
u .<br />
. o<br />
. ´<br />
.o.c goi l` dai sˆ gia tu. tuyˆn t´<br />
´<br />
´<br />
’<br />
t´ th` AX du . . a . o<br />
ınh ı<br />
e ınh.<br />
´<br />
` n tu. sinh cua biˆn ngˆn ng˜. c´ khuynh hu.´.ng ng˜. ngh˜ tr´i ngu.o.c nhau: fast<br />
’<br />
’<br />
o<br />
u<br />
ıa a<br />
e<br />
o<br />
u o<br />
Hai phˆ<br />
a<br />
.<br />
e<br />
o<br />
a o<br />
o<br />
c´ khuynh hu.´.ng “di lˆn” c`n goi l` hu.´.ng du.o.ng k´ hiˆu c+ , slow c´ khuynh hu.´.ng “di<br />
o<br />
o<br />
y e<br />
o<br />
.<br />
.<br />
<br />
.<br />
.<br />
’<br />
´<br />
´<br />
’.<br />
’. `<br />
´<br />
ˆ<br />
ˆ<br />
GIAI PHAP KET HO P SU DUNG DAI SO GIA TU VA MANG NO RON RBF<br />
.<br />
.<br />
.<br />
.<br />
<br />
41<br />
<br />
´<br />
’<br />
o a<br />
y e<br />
e u .<br />
u<br />
ıa<br />
o<br />
xuˆng” c`n goi l` hu.´.ng ˆm, k´ hiˆu c− . Do.n gian, theo quan hˆ th´. tu. ng˜. ngh˜ ta c´<br />
o<br />
o<br />
.<br />
.<br />
. a<br />
+ > c− . Ch˘ng han old > young, true > f alse.<br />
’<br />
c<br />
a<br />
.<br />
˜<br />
`<br />
` .<br />
’ o<br />
’<br />
a<br />
o<br />
o<br />
a<br />
a<br />
a<br />
u<br />
ıa ’<br />
a ’<br />
Vˆ tru.c gi´c, mˆ i gia tu. c´ khuynh hu.´.ng l`m t˘ng ho˘c giam ng˜. ngh˜ cua phˆn tu.<br />
e<br />
.<br />
’ ng han nhu. V ery f ast > f ast v` V ery slow < slow diˆu n`y c´<br />
`<br />
’<br />
sinh nguyˆn thuy. Ch˘<br />
e<br />
a<br />
a<br />
e<br />
a o<br />
.<br />
`<br />
’<br />
’<br />
ngh˜ gia tu. V ery l`m manh thˆm ng˜. ngh˜ cua ca hai phˆn tu. sinh f ast, slow. Nhu.ng<br />
ıa<br />
ıa ’<br />
a ’<br />
a<br />
e<br />
u<br />
.<br />
´<br />
´<br />
Little f ast < f ast, Littleslow > slow v` thˆ Little c´ khuynh hu.´.ng l`m yˆu di ng˜. ngh˜<br />
ı e<br />
o<br />
u<br />
o<br />
a<br />
e<br />
ıa<br />
. sinh. Ta n´i V ery l` gia tu. du.o.ng v` Little l` gia tu. ˆm. Ta k´ hiˆu H − l`<br />
`<br />
’<br />
’ a<br />
’<br />
a<br />
a<br />
a<br />
a<br />
o<br />
y e<br />
cua phˆn tu<br />
a ’<br />
.<br />
´<br />
’ a<br />
’<br />
’<br />
tˆp c´c gia tu. ˆm, H + l` tˆp c´c gia tu. du.o.ng v` H = H − ∪ H + . Nˆu ca hai gia tu. h v` k<br />
a a<br />
a<br />
a a a<br />
e ’<br />
a<br />
.<br />
.<br />
˜ a<br />
e ´<br />
c`ng thuˆc H + ho˘c H − , th` ta n´i h, k s´nh du.o.c v´.i nhau. Dˆ thˆ y Little v` P ossible l`<br />
u<br />
o<br />
a<br />
ı<br />
o<br />
a<br />
a<br />
a<br />
. o<br />
.<br />
.<br />
.o.c v´.i nhau v` Little > P osible, v` Little f alse > P ossible f alse > f alse. Ngu.o.c<br />
ı<br />
s´nh du . o<br />
a<br />
a<br />
.<br />
`<br />
´u h v` k khˆng dˆ ng th`.i thuˆc H + ho˘c H − , khi d´ ta n´i h, k ngu.o.c nhau.<br />
o<br />
a<br />
o<br />
o<br />
o<br />
a<br />
o<br />
o<br />
lai, nˆ<br />
e<br />
.<br />
.<br />
.<br />
.<br />
˜<br />
´<br />
’ ` o . ’<br />
’<br />
’<br />
Ho.n n˜.a, ch´ng ta nhˆn thˆ y mˆi gia tu. dˆu c´ su. anh hu.o.ng (l`m t˘ng ho˘c l`m giam)<br />
a a<br />
a a<br />
u<br />
u<br />
a<br />
a<br />
o<br />
e<br />
.<br />
.<br />
. ngh˜ cua c´c gia tu. kh´c. V` vˆy, nˆu k l`m t˘ng ng˜. ngh˜ cua h, ta n´i k l` du.o.ng<br />
´<br />
´<br />
’ a<br />
ıa ’ a<br />
ı a<br />
e<br />
ıa ’<br />
dˆn ng˜<br />
e<br />
u<br />
a a<br />
u<br />
o<br />
a<br />
.<br />
’<br />
´<br />
´i v´.i h. Ngu.o.c lai, nˆu k l`m giam ng˜. ngh˜ cua h, ta n´i k l` ˆm dˆi v´.i h. Ch˘ ng han<br />
´ o<br />
’<br />
’<br />
e<br />
ıa<br />
dˆ o<br />
o<br />
a<br />
u<br />
o<br />
aa<br />
o<br />
a<br />
. .<br />
.<br />
. ngˆn ng˜. V (V ery), M (M ore), L(Little), P (P ossible) cua biˆn ngˆn ng˜.<br />
´<br />
’<br />
’<br />
u<br />
e<br />
o<br />
u<br />
x´t c´c gia tu o<br />
e a<br />
.o.ng dˆi v´.i L c`n P<br />
´<br />
TRUTH. V` Ltrue < true v` V Ltrue < Ltrue < P Ltrue, nˆn V l` du<br />
ı<br />
a<br />
e<br />
a<br />
o o<br />
o<br />
´i v´.i L. T´ ˆm, du.o.ng cua c´c gia tu. dˆi v´.i c´c gia tu. kh´c khˆng phu thuˆc v`o<br />
´ o a<br />
’ a<br />
’ o<br />
’<br />
a<br />
o<br />
o a<br />
l` ˆm dˆ o<br />
aa<br />
o<br />
ınh a<br />
.<br />
.<br />
`<br />
phˆn tu. ngˆn ng˜. m` n´ t´c dˆng.<br />
a ’<br />
o<br />
u a o a o<br />
.<br />
´<br />
´<br />
´<br />
’ a<br />
’<br />
ıa<br />
e u<br />
ınh a<br />
Mˆt t´ chˆt ng˜. ngh˜ quan trong cua c´c gia tu. du.o.c goi l` t´nh kˆ th`.a. T´ chˆ t<br />
o ınh a<br />
u<br />
.<br />
.<br />
. a ı<br />
.<br />
’ hiˆn o. chˆ khi t´c dˆng gia tu. v`o mˆt gi´ tri ngˆn ng˜. th` ng˜. ngh˜ cua gi´ tri<br />
˜<br />
’ a<br />
a o<br />
o<br />
a . o<br />
u ı u<br />
ıa ’<br />
a .<br />
n`y thˆ e ’ o<br />
a<br />
e .<br />
.<br />
.<br />
’<br />
˜<br />
´<br />
`<br />
n`y bi thay dˆ i nhu.ng vˆ n gi˜. du.o.c ng˜. ngh˜ gˆc cua n´. Diˆu n`y c´ ngh˜a l` v´.i moi<br />
a .<br />
a<br />
u<br />
u<br />
ıa o ’<br />
o<br />
o<br />
e a o<br />
ı a o<br />
.<br />
.<br />
`<br />
´<br />
´<br />
`<br />
’<br />
’ o<br />
gia tu. h, gi´ tri hx th`.a kˆ ng˜. ngh˜ cua x. T´ chˆt n`y g´p phˆn bao tˆ n quan hˆ th´.<br />
ıa ’<br />
a .<br />
u e u<br />
ınh a a o<br />
a<br />
e u<br />
.<br />
`<br />
´<br />
’ o<br />
kx th` h hx<br />
ı<br />
k kx, hay h v` k bao tˆ n quan hˆ ng˜. ngh˜ cua<br />
a<br />
e u<br />
tu. ng˜. ngh˜ nˆu hx<br />
u<br />
ıa e<br />
ıa ’<br />
.<br />
.<br />
’<br />
´<br />
a<br />
a<br />
o<br />
hx v` kx mˆt c´ch tu.o.ng u.ng. Ch˘ ng han nhu. theo tru.c gi´c ta c´ Ltrue P true, khi d´<br />
a<br />
o a<br />
o<br />
.<br />
.<br />
.<br />
P Ltrue LP true.<br />
´<br />
´<br />
’<br />
2.2. C´c h`m do trong dai sˆ gia tu. tuyˆn t´ (xem [3, 4, 5])<br />
a a<br />
e ınh<br />
. o<br />
´<br />
´<br />
`<br />
´<br />
’ .<br />
’<br />
’<br />
a . o<br />
Trong phˆn n`y ta su. dung dai sˆ gia tu. AX = (X, C, H, ) l` dai sˆ gia tu. tuyˆn t´<br />
a a<br />
e ınh<br />
. o<br />
.i C = {c− , c+ } ∪ {0, 1, W }. H = H − ∪ H + , H − = {h−1 , h−2 , ..., h−q } thoa h−1 < h−2 <<br />
’<br />
v´<br />
o<br />
’<br />
... < h−q v` H + = {h1 , h2 , ..., hp } thoa h1 < h2 < ... < hp .<br />
a<br />
`<br />
`<br />
’ a<br />
’<br />
ıa a<br />
Goi H(x) l` tˆp c´c phˆn tu. cua X sinh ra t`. x bo.i c´c gia tu., ngh˜ l` H(x) bao gˆ m<br />
a a a<br />
a ’ ’<br />
u<br />
o<br />
.<br />
.<br />
. m` n´ phan ´nh y ngh˜ n`o d´ cua kh´i niˆm x. V` vˆy, k´ thu.´.c cua<br />
’ a ´<br />
c´c kh´i niˆm m` a o<br />
a<br />
a e<br />
o<br />
ıa a o ’<br />
o ’<br />
a e<br />
ı a<br />
ıch<br />
.<br />
.<br />
.<br />
’ biˆu diˆn t´ m`. cua x. T`. d´, ta c´ thˆ dinh ngh˜ dˆ do t´ m`. nhu. sau:<br />
’<br />
’ .<br />
˜ ınh o ’<br />
o e<br />
e<br />
u o<br />
o e<br />
ıa o<br />
ınh o<br />
tˆp H(x) c´ thˆ e<br />
a<br />
.<br />
.<br />
ınh ’ a<br />
Dˆ do t´ m`. cua x, k´ hiˆu l` f m(x), l` du.`.ng k´ cua tˆp f (H(x)) = {f (u) : u ∈ H(x)}.<br />
o<br />
ınh o ’<br />
y e a<br />
a o<br />
.<br />
.<br />
.<br />
. AX = (X, C, H, ). H`m f m : X → [0, 1] du.o.c goi l`<br />
´<br />
’<br />
Dinh ngh˜ 1. Cho dai sˆ gia tu<br />
ıa<br />
a<br />
.<br />
. a<br />
. o<br />
.<br />
. cua c´c phˆn tu. trong X nˆu:<br />
`<br />
´<br />
h`m dˆ do t´ m` ’ a<br />
a<br />
a ’<br />
o<br />
ınh o<br />
e<br />
.<br />
− ) + f m(c+ ) = 1 v`<br />
(fm1) f m(c<br />
a<br />
f m(hu) = f m(u), ∀u ∈ X ;<br />
h∈H<br />
<br />
o<br />
a<br />
e<br />
(fm2) f m(x) = 0, v´.i moi x sao cho H(x) = {x}. D˘c biˆt, f m(0) = f m(W ) =<br />
.<br />
.<br />
.<br />
f m(1) = 0;<br />
f m(hy)<br />
f m(hx)<br />
’ e a<br />
=<br />
(fm3) ∀x, y ∈ X, ∀h ∈ H,<br />
, ty lˆ n`y khˆng phu thuˆc v`o x, y v`<br />
o<br />
o a<br />
a<br />
.<br />
.<br />
.<br />
f m(x)<br />
f m(y)<br />
’<br />
du.o.c goi l` dˆ do t´ m`. cua gia tu. h, k´ hiˆu l` µ(h).<br />
ınh o ’<br />
y e a<br />
.<br />
.<br />
. . a o<br />
<br />
˜<br />
`<br />
ˆ<br />
´<br />
ˆ<br />
`<br />
NGUYEN CAT HO, PHAM THANH HA<br />
.<br />
<br />
42<br />
<br />
’<br />
`<br />
`<br />
’ a ’ e o ınh o<br />
a a<br />
Diˆu kiˆn (fm1) c´ ngh˜ l` c´c phˆn tu. sinh v` c´c gia tu. l` du dˆ mˆ h` h´a ng˜.<br />
e<br />
e<br />
o<br />
ıa a a<br />
a ’<br />
u<br />
.<br />
.c cua c´c biˆn vˆt l´. Tˆp gia tu. H v` hai phˆn tu. sinh nguyˆn<br />
´ .<br />
`<br />
`<br />
’<br />
e a y<br />
a<br />
e<br />
a<br />
a ’<br />
ngh˜ cua miˆn gi´ tri thu ’ a<br />
ıa ’<br />
e<br />
a . .<br />
.<br />
’<br />
´<br />
’<br />
’ e<br />
’ a o `<br />
’<br />
thuy du dˆ phu to`n bˆ miˆn gi´ tri thu.c cua biˆn ngˆn ng˜.. Vˆ tru.c gi´c, ta c´ diˆu kiˆn<br />
e<br />
a . .<br />
e<br />
e<br />
e<br />
o<br />
u ` .<br />
e<br />
a<br />
o `<br />
.<br />
.<br />
’ hiˆn su. t´c dˆng cua gia tu. h n`o d´ v`o c´c kh´i niˆm m`. l` giˆng nhau<br />
´<br />
’<br />
’<br />
(fm2), (fm3) thˆ e . a o<br />
e .<br />
a o a a<br />
a e<br />
o a o<br />
.<br />
.<br />
(khˆng phu thuˆc v`o kh´i niˆm m`.).<br />
o<br />
o a<br />
a e<br />
o<br />
.<br />
.<br />
.<br />
`<br />
e<br />
a a<br />
o<br />
ı<br />
o e<br />
o<br />
Mˆnh dˆ 1. Cho fm l` h`m dˆ do t´nh m`. trˆn X. Ta c´:<br />
e<br />
.<br />
.<br />
i) f m(hx) = µ(h)f m(x), ∀x ∈ X;<br />
ii) f m(c− ) + f m(c+ ) = 1;<br />
iii)<br />
f m(hi c) = f m(c) v´.i c ∈ {c− , c+ };<br />
o<br />
−q i p, i=0<br />
<br />
iv)<br />
<br />
f m(hi x) = f m(x) v´.i x ∈ {c− , c+ };<br />
o<br />
<br />
−q i p, i=0<br />
<br />
v)<br />
<br />
µ(hi ) = α v`<br />
a<br />
−q i −1<br />
<br />
1 i p µ(hi )<br />
<br />
= β, trong d´ α, β > 0 v` α + β = 1.<br />
o<br />
a<br />
<br />
´<br />
Dinh ngh˜ 2. H`m dˆ u sign : X → {−1, 0, 1} du.o.c dinh ngh˜ dˆ quy nhu. sau:<br />
ıa<br />
a<br />
a<br />
ıa e<br />
. .<br />
.<br />
.<br />
− ) = −1, sign(c+ ) = +1;<br />
i) sign(c<br />
´<br />
´<br />
ii) sign(h hx) = −sign(hx) nˆu h ˆm dˆi v´.i h v` h hx = hx;<br />
e<br />
a<br />
o o<br />
a<br />
.o.ng dˆi v´.i h v` h hx = hx;<br />
´<br />
´<br />
e<br />
o o<br />
a<br />
iii) sign(h hx) = sign(hx) nˆu h du<br />
´<br />
iv) sign(h hx) = 0 nˆu h hx = hx.<br />
e<br />
`<br />
´<br />
´<br />
’<br />
a `<br />
a ’<br />
Mˆnh dˆ 2. V´.i moi gia tu. h v` phˆn tu. x ∈ X, nˆu sign(hx) = +1 th` hx > x v` nˆu<br />
e<br />
e<br />
o<br />
e<br />
ı<br />
a e<br />
.<br />
.<br />
sign(hx) = −1 th` hx < x.<br />
ı<br />
Dinh ngh˜ 3. Cho f m l` h`m dˆ do t´ m`. trˆn X . Mˆt h`m dinh lu.o.ng ng˜. ngh˜ v<br />
ıa<br />
a a<br />
o<br />
ınh o e<br />
o a<br />
u<br />
ıa<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´t ho.p v´.i f m) du.o.c dinh ngh˜ nhu. sau:<br />
o<br />
trˆn X (kˆ .<br />
e<br />
e<br />
ıa<br />
. .<br />
o<br />
i) v(W ) = θ = f m(c− ), v(c− ) = θ − αf m(c− ), v(c+ ) = θαf m(c+ ), v´.i 0 < θ < 1,<br />
j<br />
<br />
ii) v(hj x) = v(x) + sign(hj x){<br />
<br />
f m(hi x) − ω(hj x)f m(hj x)}, j ∈ [−q ∧ p],<br />
<br />
i=sign(j)<br />
<br />
trong d´, ω(hj x) =<br />
o<br />
v` j = 0}.<br />
a<br />
<br />
1<br />
1 + sign(hj x)sign(hp hj x)(β − α) ∈ {α, β}, [−q ∧ p] = {j : −q<br />
2<br />
<br />
j<br />
<br />
p<br />
<br />
`<br />
`<br />
a ’<br />
Mˆnh dˆ 3. V´.i moi phˆn tu. x ∈ X ta c´ 0 v(x) 1.<br />
e<br />
e<br />
o<br />
o<br />
.<br />
.<br />
’<br />
`<br />
´<br />
’<br />
a<br />
2.3. Phu.o.ng ph´p diˆu khiˆ n m`. su. dung dai sˆ gia tu.<br />
e<br />
e<br />
o ’ .<br />
. o<br />
’<br />
˜<br />
´<br />
´<br />
´<br />
’<br />
’ a<br />
Dai sˆ gia tu. cung cˆ p mˆt co. so. to´n hoc cho viˆc biˆu diˆn ng˜. ngh˜ c´c t`. cua biˆn<br />
a<br />
o<br />
e<br />
e<br />
e<br />
u<br />
ıa a u ’<br />
e<br />
. o<br />
.<br />
.<br />
.<br />
. v` h` th´.c h´a t´ m`. ngˆn ng˜., t`. d´ xˆy du.ng dˆ do t´ m`. mˆt c´ch ho.p l´<br />
o<br />
ınh o o a<br />
u u o a .<br />
ngˆn ng˜ a ınh u o ınh o o<br />
o<br />
u<br />
.<br />
.<br />
. y<br />
’<br />
˜<br />
’ o o ınh o<br />
’<br />
([4,5]). Trˆn co. so. d´, mˆ h` m`. (1) - bang FAM (Fuzzy Associate Memory) du.o.c biˆ u diˆn<br />
e<br />
e<br />
e<br />
.<br />
.c, goi l` bang gi´ tri ng˜. ngh˜ dinh lu.o.ng SAM (Simanticization<br />
qua mˆt bang gi´ tri thu<br />
o ’<br />
a . .<br />
a . u<br />
ıa .<br />
.<br />
. a ’<br />
.<br />
.o.ng ph´p diˆu khiˆ n su. dung dai sˆ gia tu. tuˆn theo<br />
’ ’ .<br />
`<br />
´<br />
’ a<br />
e<br />
e<br />
Associate Memory). Nh` chung, phu<br />
ın<br />
a<br />
. o<br />
.´.c sau ([9, 10]):<br />
c´c bu o<br />
a<br />
˜ ´<br />
´<br />
’<br />
Bu.´.c 1. Xˆy du.ng c´c dai sˆ gia tu. cho mˆi biˆn ngˆn ng˜..<br />
o<br />
a<br />
a . o<br />
o e<br />
o<br />
u<br />
.<br />
.´.c 2. T´ to´n c´c gi´ tri ng˜. ngh˜ dinh lu.o.ng cho c´c biˆn ngˆn ng˜. du.a trˆn dinh<br />
´<br />
a<br />
e<br />
o<br />
u .<br />
e .<br />
ınh a a<br />
a . u<br />
ıa .<br />
Bu o<br />
.<br />
` dˆ do t´ m`. v` h`m dinh lu.o.ng ng˜. ngh˜<br />
ıa.<br />
u<br />
ınh o a a<br />
ngh˜ vˆ o<br />
ıa e .<br />
.<br />
.<br />
’<br />
’<br />
’<br />
’ ´<br />
a<br />
Bu.´.c 3. Xˆy du.ng c´c gia tu. u.ng v´.i c´c tˆp m`., chuyˆn dˆ i bang FAM th`nh bang SAM.<br />
o<br />
a<br />
a<br />
o a a<br />
o<br />
e o ’<br />
.<br />
.<br />
<br />
.<br />
.<br />
’<br />
´<br />
´<br />
’.<br />
’. `<br />
´<br />
ˆ<br />
ˆ<br />
GIAI PHAP KET HO P SU DUNG DAI SO GIA TU VA MANG NO RON RBF<br />
.<br />
.<br />
.<br />
.<br />
<br />
43<br />
<br />
’<br />
’<br />
o<br />
a<br />
a .<br />
Bu.´.c 4. Xˆy du.ng khoang x´c dinh c´c gia tu..<br />
a<br />
.<br />
’ ’<br />
Bu.´.c 5. Xˆy du.ng du.`.ng cong ng˜. ngh˜ dinh lu.o.ng trˆn co. so. bang SAM.<br />
o<br />
a<br />
o<br />
u<br />
ıa .<br />
e<br />
.<br />
.<br />
’<br />
´<br />
’ `<br />
e<br />
e<br />
e<br />
o<br />
a .<br />
e<br />
o<br />
u<br />
ıa .<br />
Bu.´.c 6. X´c dinh kˆt qua diˆu khiˆ n du.a trˆn du.`.ng cong ng˜. ngh˜ dinh lu.o.ng.<br />
.<br />
.<br />
’<br />
’.<br />
’.<br />
´<br />
’<br />
ˆ<br />
ˆ<br />
ˆ<br />
´<br />
E<br />
3. GIAI PHAP DI` U KHIEN SU DUNG DAI SO GIA TU<br />
.<br />
.<br />
.<br />
`<br />
ˆ<br />
VA MANG NO RON NOI SUY RBF<br />
.<br />
.<br />
e .<br />
3.1. So. lu.o.c vˆ mang no.ron RBF<br />
. `<br />
`<br />
´<br />
Phu.o.ng ph´p nˆi suy RBF (Radial Basis Function) do Powell dˆ xuˆ t ([10]) v` du.o.c<br />
a<br />
o<br />
e<br />
a<br />
a<br />
.<br />
.<br />
.i thiˆu nhu. l` mang no.ron trong [2], dˆn nay d˜ l` mˆt cˆng cu h˜.u<br />
´<br />
Broomhead v` Low gi´<br />
a<br />
o<br />
e<br />
a .<br />
e<br />
a a o o<br />
.<br />
.<br />
. u<br />
’ .<br />
´<br />
`<br />
´<br />
a a ’ a<br />
e<br />
e a<br />
o<br />
a<br />
hiˆu dˆ nˆi suy v` xˆp xı h`m nhiˆu biˆn v` dang du.o.c u.ng dung rˆng r˜i ([1, 2]).<br />
e e o<br />
. ´<br />
.<br />
.<br />
.<br />
M<br />
Phu.o.ng ph´p n`y t` h`m nˆi suy ϕ du.´.i dang ϕ(x) =<br />
a a ım a<br />
o<br />
o .<br />
wk h( x − v k , σk ) + w0 sao<br />
.<br />
k=1<br />
`<br />
cho ϕ(xk ) = y k , ∀k = 1, ..., N , trong d´ {xk }N l` tˆp vecto. trong khˆng gian n - chiˆu<br />
o<br />
o<br />
e<br />
.<br />
k=1 a a<br />
.o.c goi l` c´c mˆc nˆi suy) v` y k = f (xk ) l` gi´ tri do du.o.c cua h`m f cˆn nˆi suy, h`m<br />
`<br />
´ .<br />
’ a<br />
a a .<br />
a o<br />
a<br />
(du .<br />
o o<br />
a<br />
.<br />
. a a<br />
.<br />
.c h( x − v k , σ ) du.o.c goi l` h`m co. so. b´n k´ v´.i tˆm v k (M<br />
’ a ınh o a<br />
thu<br />
N ), wk v` σk l`<br />
a<br />
a<br />
k<br />
.<br />
.<br />
. a a<br />
´ a<br />
´<br />
c´c gi´ tri tham sˆ cˆn t`<br />
a<br />
a .<br />
o ` ım. Trong d´, dang h`m b´n k´nh thˆng dung nhˆ t l` h`m Gauss<br />
o .<br />
a<br />
a ı<br />
o<br />
a a a<br />
.<br />
2<br />
2<br />
’<br />
´ .<br />
h(u, σ) = e−u /σ v` tˆm l` c´c mˆc nˆi suy (khi d´ M = N ). H`m nˆi suy n`y c´ u.u diˆ m<br />
a a a a<br />
o o<br />
o<br />
a<br />
o<br />
a o<br />
e<br />
.<br />
’<br />
’<br />
´<br />
´<br />
a<br />
a<br />
l` tˆ ng c´c b` phu.o.ng sai sˆ cua n´ khˆng c´ cu.c tiˆu dia phu.o.ng nˆn dˆn nay c´c thuˆt<br />
a o<br />
a ınh<br />
o ’ o o<br />
o .<br />
e .<br />
e e<br />
.<br />
.`.ng theo hu.´.ng t`m cu.c tiˆu sai sˆ tˆ ng c´c b` phu.o.ng ho˘c giai<br />
’<br />
´<br />
´ ’<br />
’<br />
to´n huˆ n luyˆn mang thu o<br />
a<br />
a<br />
e<br />
o<br />
ı<br />
e<br />
o o<br />
a ınh<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.c tiˆp hˆ phu.o.ng tr` nˆi suy ([11]).<br />
´ .<br />
tru e e<br />
ınh o<br />
.<br />
.<br />
´ ´<br />
3.2. Thiˆt kˆ mang RBF<br />
e e .<br />
´<br />
´<br />
´<br />
e<br />
e<br />
u<br />
a .<br />
3.2.1. Kiˆn tr´c: V´.i viˆc xˆ p xı h`m n biˆn f : Rn → R, kiˆn tr´ c mang x´c dinh nhu. sau<br />
e<br />
u<br />
o e a ’ a<br />
.<br />
. ´<br />
w1<br />
y<br />
wm<br />
<br />
t ng vào<br />
các nút<br />
<br />
t ng nơron<br />
n<br />
<br />
T ng vào có n nút ng v i n bi n<br />
c a hàm.<br />
T ng n có m nơron b ng v i s<br />
m c n i suy, các m c n i suy ư c<br />
xem như các tâm m ng.<br />
T ng ra có 1 nơron<br />
Các nơ ron gi a các t ng ư c n i<br />
v i nhau b i các tr ng s liên k t wk,<br />
k=1..m<br />
<br />
t ng nơron<br />
ra<br />
<br />
H` 1. Mˆ h` mang nˆi suy RBF<br />
ınh<br />
o ınh .<br />
o<br />
.<br />
´<br />
3.2.3. Huˆ n luyˆn mang<br />
a<br />
e<br />
.<br />
.<br />
´<br />
Viˆc huˆ n luyˆn mang tˆp trung v`o viˆc x´c dinh c´c b´n k´ σk u.ng v´.i c´c tˆm mang<br />
e<br />
a<br />
e<br />
a<br />
a<br />
e a .<br />
a a ınh<br />
´<br />
o a a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´ kˆt nˆi wk . Sau dˆy l` mˆt thuˆt to´n huˆ n luyˆn mang ([6]).<br />
´ o<br />
´<br />
´<br />
v` c´c trong sˆ e<br />
a a<br />
o<br />
a a o<br />
a<br />
a<br />
a<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
Algorithm 1. X´c dinh b´n k´<br />
a .<br />
a ınh<br />
´ .<br />
Input: C´c mˆc nˆi suy (tˆm mang) xk = (xk , ..., xk ), k = 1...m<br />
a<br />
o o<br />
a<br />
.<br />
n<br />
1<br />
<br />