intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giải pháp kết hợp sử dụng đại số gia tử và mạng nơron RBF trong việc giải quyết bài toán điều khiển mờ

Chia sẻ: Nguyễn Minh Vũ | Ngày: | Loại File: PDF | Số trang:11

61
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

In the last few years, thanks to the development of the Fuzzy logic theory and Hedge algebra, more complex Fuzzy control problems were solved. In this papers, we will present the solution that uses combination between Hedge Algebra and RBF neural network in the Fuzzy control method.

Chủ đề:
Lưu

Nội dung Text: Giải pháp kết hợp sử dụng đại số gia tử và mạng nơron RBF trong việc giải quyết bài toán điều khiển mờ

’<br /> Tap ch´ Tin hoc v` Diˆu khiˆ n hoc, T.23, S.1 (2007), 39—49<br /> ı<br /> e<br /> e<br /> .<br /> . a `<br /> .<br /> <br /> .<br /> .<br /> ’<br /> ´<br /> ´<br /> ’.<br /> ’. `<br /> ´<br /> ˆ<br /> ˆ<br /> GIAI PHAP KET HO P SU DUNG DAI SO GIA TU VA MANG NO RON RBF<br /> .<br /> .<br /> .<br /> .<br /> ’<br /> `<br /> ’<br /> ´<br /> ˆ<br /> ˆ<br /> `.<br /> ˆ<br /> ˆ<br /> `<br /> ´<br /> TRONG VIEC GIAI QUYET BAI TOAN DIEU KHIEN MO<br /> .<br /> ˜<br /> `<br /> ˆ<br /> ´<br /> ˆ<br /> `<br /> NGUYEN CAT HO1 , PHAM THANH HA2<br /> .<br /> 1 Viˆn<br /> e<br /> <br /> .<br /> <br /> Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br /> o<br /> e o<br /> e<br /> e e<br /> .<br /> .<br /> . a o<br /> .<br /> .<br /> 2 Tru.`.ng Dai hoc Giao thˆng Vˆn ta i H` Nˆi<br /> ’ a o<br /> o<br /> a<br /> o<br /> . .<br /> .<br /> .<br /> <br /> Abstract. In the last few years, thanks to the development of the Fuzzy logic theory and Hedge<br /> algebra, more complex Fuzzy control problems were solved. In this papers, we will present the solution<br /> that uses combination between Hedge Algebra and RBF neural network in the Fuzzy control method.<br /> ’ ’ y<br /> ´<br /> `<br /> ´ .<br /> ´<br /> ’<br /> a<br /> a a u<br /> a<br /> e<br /> e a<br /> o a . o<br /> T´m t˘t. Trong nh˜.ng n˘m gˆn dˆy c`ng v´.i su. ph´t triˆ n cua l´ thuyˆt tˆp m`. v` dai sˆ gia tu.,<br /> o<br /> a<br /> u<br /> o .<br /> ’n m`. ph´.c tap d˜ du.o.c giai quyˆt th`nh cˆng, tiˆp tuc vˆ n dˆ n`y ch´ ng<br /> `<br /> `<br /> ´<br /> ´<br /> ´ e<br /> ’<br /> e<br /> e<br /> o<br /> a<br /> u<br /> nhiˆu b`i to´n diˆu khiˆ<br /> e a<br /> a<br /> u .<br /> e<br /> a<br /> o<br /> e . a ` a<br /> .<br /> ’<br /> ´<br /> ´<br /> ´<br /> ´<br /> ’<br /> ’ .<br /> ’ a .<br /> tˆi dˆ xuˆ t giai ph´p kˆt ho.p su. dung dai sˆ gia tu. v` mang no.ron RBF dˆ giai quyˆt c´c b`i to´n<br /> o `<br /> e a<br /> a e .<br /> o<br /> e ’<br /> e a a<br /> a<br /> .<br /> ’<br /> ` u khiˆ n m`..<br /> diˆ<br /> e<br /> e<br /> o<br /> <br /> ´<br /> ˘<br /> ˆ<br /> ˆ<br /> DAT VAN D`<br /> E<br /> .<br /> ´<br /> ´<br /> ’ a ’ .<br /> ’<br /> a a<br /> Trong mˆt sˆ nghiˆn c´.u gˆn dˆy ([9, 10]) c´c t´c gia d˜ su. dung cˆ u tr´c dai sˆ gia tu.<br /> o o<br /> e u `<br /> a a<br /> a<br /> u . o<br /> . ´<br /> ’<br /> ’<br /> ˜ a `<br /> ` m biˆu diˆn miˆn gi´ tri cua c´c biˆn ngˆn ng˜., theo d´ mˆi luˆt diˆu khiˆn m`. tu.o.ng<br /> ˜<br /> `<br /> ´<br /> ’ a<br /> o o<br /> e<br /> e<br /> o<br /> nh˘<br /> a<br /> e<br /> e<br /> e<br /> a .<br /> e<br /> o<br /> u<br /> .<br /> ’<br /> `<br /> `<br /> ’ .<br /> u.ng v´.i mˆt diˆ m thu.c trong khˆng gian n + 1 chiˆu, b˘ ng c´ch su. dung c´c ph´p t´ ho.p<br /> ´<br /> o<br /> o<br /> o<br /> a<br /> e ıch .<br /> e<br /> e<br /> a<br /> a<br /> .<br /> .<br /> ’<br /> ` o<br /> `<br /> nhu. AND=PRODUCT ho˘c AND=MIN c´c diˆm trˆn du.o.c du.a vˆ khˆng gian 2 chiˆu, nh`.<br /> a<br /> a<br /> e<br /> e<br /> o<br /> e<br /> e<br /> .<br /> .<br /> . so. c´c diˆ m n`y, du.`.ng cong ng˜. ngh˜a dinh lu.o.ng du.o.c x´c dinh v`<br /> ’<br /> ’ a<br /> e<br /> a<br /> a<br /> ph´p nˆi suy trˆn co<br /> e o<br /> e<br /> o<br /> u<br /> ı .<br /> .<br /> .<br /> . a .<br /> ’<br /> ´<br /> ’ `<br /> kˆt qua diˆu khiˆ n du.o.c x´c dinh du.a trˆn du.`.ng cong. Tuy nhiˆn viˆc su. dung c´c ph´p<br /> e<br /> a .<br /> e<br /> o<br /> e<br /> e ’ .<br /> a<br /> e<br /> e<br /> e<br /> .<br /> .<br /> .<br /> ’<br /> ’<br /> t´ ho.p nhu. AND=PRODUCT ho˘c AND=MIN dˆ du.a mˆt diˆm trong khˆng gian n + 1<br /> ıch .<br /> a<br /> o<br /> e<br /> e<br /> o<br /> .<br /> .<br /> ’<br /> ’<br /> ˜ a<br /> ` u vˆ mˆt diˆ m trong khˆng gian 2 chiˆu dˆ gˆy mˆt m´t nhiˆu thˆng tin. Dˆ g´p phˆn<br /> ` o<br /> `<br /> ´ a<br /> `<br /> `<br /> chiˆ e .<br /> e<br /> e<br /> o<br /> e e<br /> a<br /> e<br /> o<br /> e o<br /> a<br /> .p su. dung dai sˆ gia tu. v`<br /> ´<br /> ´<br /> ´<br /> ´<br /> ´ ´ e<br /> ’<br /> ’<br /> ’ a<br /> u<br /> o e . `<br /> e a<br /> a e .<br /> o<br /> giai quyˆt vˆ n dˆ trˆn ch´ng tˆi tiˆp tuc dˆ xuˆ t giai ph´p kˆt ho ’ .<br /> e a ` e<br /> .<br /> ’<br /> o<br /> a `<br /> e<br /> e<br /> o<br /> mang no.ron nˆi suy RBF trong phu.o.ng ph´p diˆu khiˆn m`..<br /> .<br /> .<br /> ’<br /> `<br /> `<br /> ´<br /> e<br /> a<br /> e<br /> e<br /> o<br /> Cˆ u tr´c cua b`i b´o gˆ m 5 muc, Muc 1 gi´.i thiˆu phu.o.ng ph´p diˆu khiˆn m`., Muc 2<br /> a<br /> u ’ a a o<br /> o<br /> .<br /> .<br /> .<br /> .<br /> ’<br /> ` . o<br /> ´<br /> ´<br /> ’ a<br /> ’<br /> gi´.i thiˆu so. lu.o.c vˆ dai sˆ gia tu. v` phu.o.ng ph´p diˆu khiˆn m`. su. dung dai sˆ gia tu., Muc<br /> o<br /> e<br /> e<br /> a `<br /> e<br /> e<br /> o ’ .<br /> o<br /> .<br /> .<br /> .<br /> .<br /> ’ ´<br /> ´<br /> ’ .<br /> ’ a .<br /> 3 ch´ng tˆi dˆ xuˆ t phu.o.ng ph´p diˆu khiˆn kˆt ho.p su. dung gia tu. v` mang nˆi suy RBF,<br /> u<br /> o `<br /> a `<br /> o<br /> e a<br /> e<br /> e e .<br /> .<br /> ´ a a<br /> Muc 4 l` v´ du minh hoa v` Muc 5 l` kˆt luˆn d´nh gi´ giai ph´p.<br /> a ı .<br /> a e<br /> a ’<br /> a<br /> .<br /> . a .<br /> .<br /> . .<br /> ’<br /> ´<br /> ˆ<br /> ˆ<br /> `.<br /> 1. PHU O NG PHAP DI` U KHIEN MO<br /> E<br /> ´ .<br /> ´<br /> ’ y<br /> ’<br /> e a<br /> o u u<br /> a<br /> e ’<br /> o<br /> a<br /> a a<br /> Trˆn co. so. l´ thuyˆt tˆp m`., t`. nh˜.ng n˘m 70 cua thˆ ky tru.´.c, c´c phu.o.ng ph´p lˆp<br /> e<br /> .<br /> .o.c ph´t triˆn manh m˜ v` c´ nh˜.ng u.ng dung thu.c tiˆn quan trong. Mˆt<br /> ’<br /> ˜<br /> ´<br /> luˆn xˆ p xı d˜ du .<br /> a a ’ a<br /> a<br /> e<br /> e a o u ´<br /> e<br /> o<br /> .<br /> .<br /> .<br /> .<br /> .<br /> .<br /> ´<br /> ´ trong nh˜.ng phu.o.ng ph´p lˆp, d´ l` c´c phu.o.ng ph´p lˆp luˆn m`. da diˆu kiˆn viˆt t˘t l`<br /> `<br /> ´ a a<br /> sˆ<br /> o<br /> u<br /> a a<br /> a a<br /> a<br /> o<br /> o a a<br /> e<br /> e<br /> e<br /> .<br /> .<br /> .<br /> .<br /> ’<br /> ınh a `<br /> e ’<br /> phu.o.ng ph´p FMCR (Fuzzy Multiple Conditional Reasoning) v` dˆy ch´ l` nˆn tang cua<br /> a<br /> a a<br /> <br /> ˜<br /> `<br /> ˆ<br /> ´<br /> ˆ<br /> `<br /> NGUYEN CAT HO, PHAM THANH HA<br /> .<br /> <br /> 40<br /> <br /> ’<br /> a `<br /> phu.o.ng ph´p diˆu khiˆn m`..<br /> e<br /> e<br /> o<br /> .o.ng ph´p lˆp luˆn n`y du.a trˆn tˆp c´c mˆnh dˆ dang if-then nhu. sau:<br /> ` .<br /> a a<br /> a a<br /> e a a<br /> e<br /> Phu<br /> e<br /> .<br /> .<br /> .<br /> .<br /> .<br /> If X1 = A11 and ... and Xm = A1m then Y = B1<br /> If X1 = A21 and ... and Xm = A2m then Y = B2<br /> ...<br /> <br /> (1)<br /> <br /> If X1 = An1 and ... and Xm = Anm then Y = Bn<br /> ’<br /> u o<br /> u o ’ a .<br /> trong d´ Aij v` Bi , i = 1, ..., n, j = 1, ..., m, l` nh˜.ng t`. ngˆn ng˜. mˆ ta c´c dai lu.o.ng cua<br /> o<br /> a<br /> a u<br /> .<br /> . Xj v` Y.<br /> ´<br /> biˆn ngˆn ng˜<br /> e<br /> o<br /> u<br /> a<br /> .o.c goi l` mˆ h` m`. ngo`i ra n´ c`n du.o.c goi l` bˆ nh´. m`. liˆn ho.p (Fuzzy<br /> a<br /> o o<br /> o o e<br /> (1) du .<br /> . a o ınh o<br /> .<br /> . a o<br /> .<br /> .<br /> ’<br /> ˜<br /> Associate Memory (FAM)) v` n´ biˆ u diˆn tri th´.c cua chuyˆn gia trong l˜ vu.c u.ng dung<br /> ı o e<br /> e<br /> u ’<br /> e<br /> ınh . ´<br /> .<br /> e<br /> n`o d´ dang du.o.c x´t.<br /> a o<br /> .<br /> ’<br /> B`i to´n lˆp luˆn m`. du.o.c ph´t biˆ u nhu. sau: Cho tru.´.c mˆ h` m`. o. dang (1). Khi<br /> a a a<br /> a<br /> o<br /> a<br /> e<br /> o<br /> o ınh o ’ .<br /> .<br /> .<br /> .<br /> .ng v´.i c´c gi´ tri (ho˘c gi´ tri m`., ho˘c gi´ tri thu.c) cua c´c biˆn dˆu v`o d˜ cho, h˜y<br /> ´ a a a<br /> ’ a<br /> o a<br /> a .<br /> a<br /> a . o<br /> a<br /> a . .<br /> e `<br /> d´ u<br /> o´<br /> a<br /> .<br /> .<br /> ´<br /> ’<br /> t´ gi´ tri dˆu ra cua biˆn Y.<br /> ınh a . `<br /> a<br /> e<br /> ´ .<br /> ´ .<br /> `<br /> e a<br /> e a ’ y<br /> e a<br /> o a<br /> a a<br /> a<br /> o<br /> Du.a trˆn c´ch tiˆp cˆn cua l´ thuyˆt tˆp m`., c´c phu.o.ng ph´p lˆp luˆn m`. da diˆu kiˆn<br /> e<br /> e<br /> .<br /> .<br /> .<br /> .<br /> .a trˆn y tu.o.ng sau: Ng˜. ngh˜ cua c´c gi´ tri ngˆn ng˜. cua c´c biˆn ngˆn ng˜.<br /> ´<br /> n´i chung du<br /> o<br /> ıa ’ a<br /> a . o<br /> u ’ a<br /> e<br /> o<br /> u<br /> u<br /> e ´ ’<br /> .<br /> ’<br /> ˜<br /> `<br /> trong mˆ h` m`. du.o.c biˆ u thi b˘ ng c´c tˆp m`., khi d´ mˆ i mˆ h` m`. s˜ du.o.c mˆ phong<br /> o ınh o<br /> e<br /> a<br /> a a<br /> o<br /> o ’<br /> o o o ınh o e<br /> .<br /> .<br /> .<br /> .<br /> `<br /> o<br /> b˘ ng mˆt quan hˆ m`. hai ngˆi R.<br /> a<br /> o<br /> e o<br /> .<br /> .<br /> `<br /> ´ a<br /> Khi d´ u.ng v´.i vecto. dˆu v`o A0 , gi´ tri cua biˆn dˆu ra du.o.c t´nh theo cˆng th´.c<br /> o<br /> o<br /> u<br /> o ´<br /> a<br /> a<br /> a . ’<br /> e `<br /> . ı<br /> ´t nhˆp (Aggreegation operator).<br /> B0 = A0 ∗ R, trong d´ ∗ l` mˆt ph´p kˆ<br /> o a o<br /> e e<br /> a<br /> .<br /> .<br /> ´<br /> ’<br /> ’<br /> Tuy y tu.o.ng chung l` giˆng nhau, nhu.ng nh˜.ng phu.o.ng ph´p lˆp luˆn s˜ kh´c nhau o.<br /> ´<br /> a o<br /> u<br /> a a<br /> a e a<br /> .<br /> .<br /> .c mˆ phong mˆ h` m`. v` c´ch x´c dinh ph´p t´ kˆt nhˆp ([7, 8]).<br /> ´<br /> ’<br /> o<br /> o ınh o a a<br /> a .<br /> e ınh e<br /> a<br /> c´nh th´<br /> a<br /> u<br /> .<br /> .o.ng ph´p lˆp luˆn m`. n´i chung phu thuˆc nhiˆu yˆu tˆ rˆ t c˘n ban<br /> `<br /> ´ ´ ´<br /> ’<br /> ’ ’<br /> a a<br /> a<br /> o o<br /> o<br /> e e o a a<br /> Hiˆu qua cua phu<br /> e<br /> .<br /> .<br /> .<br /> .<br /> .<br /> ’ ng han nhu. lu.a chon tˆp m`. (b`i to´n xˆy du.ng c´c h`m thuˆc), xˆy du.ng quan hˆ m`.<br /> ch˘<br /> a<br /> o a a a<br /> a a<br /> o<br /> a<br /> e o<br /> .<br /> .<br /> . a<br /> .<br /> .<br /> .<br /> .<br /> .<br /> ´<br /> ´ o ınh o<br /> ´<br /> ’<br /> mˆ phong tˆt nhˆ t mˆ h` m`. (tri th´.c) v` b`i to´n lu.a chon ph´p kˆt nhˆp,... Dˆy l` mˆt<br /> o<br /> o<br /> a<br /> u<br /> a a a .<br /> e e<br /> a<br /> a a o<br /> .<br /> .<br /> .<br /> `<br /> ’<br /> ’ a a a<br /> kh´ kh˘n khˆng nho khi xˆy du.ng phu.o.ng ph´p giai b`i to´n lˆp luˆn m`. da diˆu kiˆn.<br /> o a<br /> o<br /> a<br /> a<br /> a<br /> o<br /> e<br /> e<br /> .<br /> .<br /> .<br /> .<br /> . .<br /> ’<br /> ’. `<br /> ´<br /> ´<br /> ˆ<br /> ˆ<br /> ˆ<br /> `.<br /> 2. DAI SO GIA TU VA PHU O NG PHAP DI` U KHIEN MO<br /> E<br /> .<br /> .<br /> .<br /> ´<br /> ’<br /> ’<br /> ˆ<br /> SU DUNG DAI SO GIA TU<br /> .<br /> .<br /> ´<br /> ´<br /> ’ ’<br /> e<br /> o<br /> u<br /> 2.1. Dai sˆ gia tu. cua biˆn ngˆn ng˜.<br /> . o<br /> ´<br /> ´<br /> ’ ’<br /> ’<br /> Gia su. X l` mˆt biˆn ngˆn ng˜. v` miˆn gi´ tri cua X l` Dom(X). Mˆt dai sˆ gia tu. AX<br /> a o e<br /> o<br /> u a `<br /> a<br /> o . o<br /> e<br /> a . ’<br /> .<br /> .<br /> .o.ng u.ng cua X l` mˆt bˆ 4 th`nh phˆn AX = (Dom(X), C, H, ) trong d´ C l` tˆp c´c<br /> `<br /> ’<br /> ´<br /> tu<br /> a o o<br /> a<br /> a<br /> o<br /> a a a<br /> . .<br /> .<br /> `<br /> ’ a<br /> a a a<br /> a<br /> e ’<br /> u<br /> ı<br /> phˆn tu. sinh, H l` tˆp c´c gia tu. v` quan hˆ “ ” l` quan hˆ cam sinh ng˜. ngh˜ trˆn X . V´<br /> a ’<br /> e<br /> ıa e<br /> .<br /> .<br /> .<br /> . X l` tˆc dˆ quay cua mˆt mˆ to. th` Dom(X) = {fast, very fast, possible fast, very<br /> ´ .<br /> ’<br /> du nhu<br /> ı<br /> a o o<br /> o<br /> o<br /> .<br /> .<br /> ´<br /> `<br /> slow, low...} ∪ {0, 1, W }, C = {f ast, slow, 0, 1, W }, v´.i 0, 1, W l` phˆn tu. b´ nhˆ t, phˆn tu.<br /> a ’<br /> o<br /> a `<br /> a ’ e a<br /> .n nhˆ t v` phˆn tu. trung h`a tu.o.ng u.ng, H = {very, more, possible, little}.<br /> ´<br /> l´<br /> o<br /> o<br /> a a `<br /> a ’<br /> ´<br /> ´<br /> ´<br /> ´<br /> ’<br /> e<br /> Trong dai sˆ gia tu. AX = (Dom(X), C, H, ) nˆu Dom(X) v` C l` tˆp s˘p th´. tu. tuyˆn<br /> e<br /> a<br /> a a a<br /> u .<br /> . o<br /> . ´<br /> .o.c goi l` dai sˆ gia tu. tuyˆn t´<br /> ´<br /> ´<br /> ’<br /> t´ th` AX du . . a . o<br /> ınh ı<br /> e ınh.<br /> ´<br /> ` n tu. sinh cua biˆn ngˆn ng˜. c´ khuynh hu.´.ng ng˜. ngh˜ tr´i ngu.o.c nhau: fast<br /> ’<br /> ’<br /> o<br /> u<br /> ıa a<br /> e<br /> o<br /> u o<br /> Hai phˆ<br /> a<br /> .<br /> e<br /> o<br /> a o<br /> o<br /> c´ khuynh hu.´.ng “di lˆn” c`n goi l` hu.´.ng du.o.ng k´ hiˆu c+ , slow c´ khuynh hu.´.ng “di<br /> o<br /> o<br /> y e<br /> o<br /> .<br /> .<br /> <br /> .<br /> .<br /> ’<br /> ´<br /> ´<br /> ’.<br /> ’. `<br /> ´<br /> ˆ<br /> ˆ<br /> GIAI PHAP KET HO P SU DUNG DAI SO GIA TU VA MANG NO RON RBF<br /> .<br /> .<br /> .<br /> .<br /> <br /> 41<br /> <br /> ´<br /> ’<br /> o a<br /> y e<br /> e u .<br /> u<br /> ıa<br /> o<br /> xuˆng” c`n goi l` hu.´.ng ˆm, k´ hiˆu c− . Do.n gian, theo quan hˆ th´. tu. ng˜. ngh˜ ta c´<br /> o<br /> o<br /> .<br /> .<br /> . a<br /> + > c− . Ch˘ng han old > young, true > f alse.<br /> ’<br /> c<br /> a<br /> .<br /> ˜<br /> `<br /> ` .<br /> ’ o<br /> ’<br /> a<br /> o<br /> o<br /> a<br /> a<br /> a<br /> u<br /> ıa ’<br /> a ’<br /> Vˆ tru.c gi´c, mˆ i gia tu. c´ khuynh hu.´.ng l`m t˘ng ho˘c giam ng˜. ngh˜ cua phˆn tu.<br /> e<br /> .<br /> ’ ng han nhu. V ery f ast > f ast v` V ery slow < slow diˆu n`y c´<br /> `<br /> ’<br /> sinh nguyˆn thuy. Ch˘<br /> e<br /> a<br /> a<br /> e<br /> a o<br /> .<br /> `<br /> ’<br /> ’<br /> ngh˜ gia tu. V ery l`m manh thˆm ng˜. ngh˜ cua ca hai phˆn tu. sinh f ast, slow. Nhu.ng<br /> ıa<br /> ıa ’<br /> a ’<br /> a<br /> e<br /> u<br /> .<br /> ´<br /> ´<br /> Little f ast < f ast, Littleslow > slow v` thˆ Little c´ khuynh hu.´.ng l`m yˆu di ng˜. ngh˜<br /> ı e<br /> o<br /> u<br /> o<br /> a<br /> e<br /> ıa<br /> . sinh. Ta n´i V ery l` gia tu. du.o.ng v` Little l` gia tu. ˆm. Ta k´ hiˆu H − l`<br /> `<br /> ’<br /> ’ a<br /> ’<br /> a<br /> a<br /> a<br /> a<br /> o<br /> y e<br /> cua phˆn tu<br /> a ’<br /> .<br /> ´<br /> ’ a<br /> ’<br /> ’<br /> tˆp c´c gia tu. ˆm, H + l` tˆp c´c gia tu. du.o.ng v` H = H − ∪ H + . Nˆu ca hai gia tu. h v` k<br /> a a<br /> a<br /> a a a<br /> e ’<br /> a<br /> .<br /> .<br /> ˜ a<br /> e ´<br /> c`ng thuˆc H + ho˘c H − , th` ta n´i h, k s´nh du.o.c v´.i nhau. Dˆ thˆ y Little v` P ossible l`<br /> u<br /> o<br /> a<br /> ı<br /> o<br /> a<br /> a<br /> a<br /> . o<br /> .<br /> .<br /> .o.c v´.i nhau v` Little > P osible, v` Little f alse > P ossible f alse > f alse. Ngu.o.c<br /> ı<br /> s´nh du . o<br /> a<br /> a<br /> .<br /> `<br /> ´u h v` k khˆng dˆ ng th`.i thuˆc H + ho˘c H − , khi d´ ta n´i h, k ngu.o.c nhau.<br /> o<br /> a<br /> o<br /> o<br /> o<br /> a<br /> o<br /> o<br /> lai, nˆ<br /> e<br /> .<br /> .<br /> .<br /> .<br /> ˜<br /> ´<br /> ’ ` o . ’<br /> ’<br /> ’<br /> Ho.n n˜.a, ch´ng ta nhˆn thˆ y mˆi gia tu. dˆu c´ su. anh hu.o.ng (l`m t˘ng ho˘c l`m giam)<br /> a a<br /> a a<br /> u<br /> u<br /> a<br /> a<br /> o<br /> e<br /> .<br /> .<br /> . ngh˜ cua c´c gia tu. kh´c. V` vˆy, nˆu k l`m t˘ng ng˜. ngh˜ cua h, ta n´i k l` du.o.ng<br /> ´<br /> ´<br /> ’ a<br /> ıa ’ a<br /> ı a<br /> e<br /> ıa ’<br /> dˆn ng˜<br /> e<br /> u<br /> a a<br /> u<br /> o<br /> a<br /> .<br /> ’<br /> ´<br /> ´i v´.i h. Ngu.o.c lai, nˆu k l`m giam ng˜. ngh˜ cua h, ta n´i k l` ˆm dˆi v´.i h. Ch˘ ng han<br /> ´ o<br /> ’<br /> ’<br /> e<br /> ıa<br /> dˆ o<br /> o<br /> a<br /> u<br /> o<br /> aa<br /> o<br /> a<br /> . .<br /> .<br /> . ngˆn ng˜. V (V ery), M (M ore), L(Little), P (P ossible) cua biˆn ngˆn ng˜.<br /> ´<br /> ’<br /> ’<br /> u<br /> e<br /> o<br /> u<br /> x´t c´c gia tu o<br /> e a<br /> .o.ng dˆi v´.i L c`n P<br /> ´<br /> TRUTH. V` Ltrue < true v` V Ltrue < Ltrue < P Ltrue, nˆn V l` du<br /> ı<br /> a<br /> e<br /> a<br /> o o<br /> o<br /> ´i v´.i L. T´ ˆm, du.o.ng cua c´c gia tu. dˆi v´.i c´c gia tu. kh´c khˆng phu thuˆc v`o<br /> ´ o a<br /> ’ a<br /> ’ o<br /> ’<br /> a<br /> o<br /> o a<br /> l` ˆm dˆ o<br /> aa<br /> o<br /> ınh a<br /> .<br /> .<br /> `<br /> phˆn tu. ngˆn ng˜. m` n´ t´c dˆng.<br /> a ’<br /> o<br /> u a o a o<br /> .<br /> ´<br /> ´<br /> ´<br /> ’ a<br /> ’<br /> ıa<br /> e u<br /> ınh a<br /> Mˆt t´ chˆt ng˜. ngh˜ quan trong cua c´c gia tu. du.o.c goi l` t´nh kˆ th`.a. T´ chˆ t<br /> o ınh a<br /> u<br /> .<br /> .<br /> . a ı<br /> .<br /> ’ hiˆn o. chˆ khi t´c dˆng gia tu. v`o mˆt gi´ tri ngˆn ng˜. th` ng˜. ngh˜ cua gi´ tri<br /> ˜<br /> ’ a<br /> a o<br /> o<br /> a . o<br /> u ı u<br /> ıa ’<br /> a .<br /> n`y thˆ e ’ o<br /> a<br /> e .<br /> .<br /> .<br /> ’<br /> ˜<br /> ´<br /> `<br /> n`y bi thay dˆ i nhu.ng vˆ n gi˜. du.o.c ng˜. ngh˜ gˆc cua n´. Diˆu n`y c´ ngh˜a l` v´.i moi<br /> a .<br /> a<br /> u<br /> u<br /> ıa o ’<br /> o<br /> o<br /> e a o<br /> ı a o<br /> .<br /> .<br /> `<br /> ´<br /> ´<br /> `<br /> ’<br /> ’ o<br /> gia tu. h, gi´ tri hx th`.a kˆ ng˜. ngh˜ cua x. T´ chˆt n`y g´p phˆn bao tˆ n quan hˆ th´.<br /> ıa ’<br /> a .<br /> u e u<br /> ınh a a o<br /> a<br /> e u<br /> .<br /> `<br /> ´<br /> ’ o<br /> kx th` h hx<br /> ı<br /> k kx, hay h v` k bao tˆ n quan hˆ ng˜. ngh˜ cua<br /> a<br /> e u<br /> tu. ng˜. ngh˜ nˆu hx<br /> u<br /> ıa e<br /> ıa ’<br /> .<br /> .<br /> ’<br /> ´<br /> a<br /> a<br /> o<br /> hx v` kx mˆt c´ch tu.o.ng u.ng. Ch˘ ng han nhu. theo tru.c gi´c ta c´ Ltrue P true, khi d´<br /> a<br /> o a<br /> o<br /> .<br /> .<br /> .<br /> P Ltrue LP true.<br /> ´<br /> ´<br /> ’<br /> 2.2. C´c h`m do trong dai sˆ gia tu. tuyˆn t´ (xem [3, 4, 5])<br /> a a<br /> e ınh<br /> . o<br /> ´<br /> ´<br /> `<br /> ´<br /> ’ .<br /> ’<br /> ’<br /> a . o<br /> Trong phˆn n`y ta su. dung dai sˆ gia tu. AX = (X, C, H, ) l` dai sˆ gia tu. tuyˆn t´<br /> a a<br /> e ınh<br /> . o<br /> .i C = {c− , c+ } ∪ {0, 1, W }. H = H − ∪ H + , H − = {h−1 , h−2 , ..., h−q } thoa h−1 < h−2 <<br /> ’<br /> v´<br /> o<br /> ’<br /> ... < h−q v` H + = {h1 , h2 , ..., hp } thoa h1 < h2 < ... < hp .<br /> a<br /> `<br /> `<br /> ’ a<br /> ’<br /> ıa a<br /> Goi H(x) l` tˆp c´c phˆn tu. cua X sinh ra t`. x bo.i c´c gia tu., ngh˜ l` H(x) bao gˆ m<br /> a a a<br /> a ’ ’<br /> u<br /> o<br /> .<br /> .<br /> . m` n´ phan ´nh y ngh˜ n`o d´ cua kh´i niˆm x. V` vˆy, k´ thu.´.c cua<br /> ’ a ´<br /> c´c kh´i niˆm m` a o<br /> a<br /> a e<br /> o<br /> ıa a o ’<br /> o ’<br /> a e<br /> ı a<br /> ıch<br /> .<br /> .<br /> .<br /> ’ biˆu diˆn t´ m`. cua x. T`. d´, ta c´ thˆ dinh ngh˜ dˆ do t´ m`. nhu. sau:<br /> ’<br /> ’ .<br /> ˜ ınh o ’<br /> o e<br /> e<br /> u o<br /> o e<br /> ıa o<br /> ınh o<br /> tˆp H(x) c´ thˆ e<br /> a<br /> .<br /> .<br /> ınh ’ a<br /> Dˆ do t´ m`. cua x, k´ hiˆu l` f m(x), l` du.`.ng k´ cua tˆp f (H(x)) = {f (u) : u ∈ H(x)}.<br /> o<br /> ınh o ’<br /> y e a<br /> a o<br /> .<br /> .<br /> .<br /> . AX = (X, C, H, ). H`m f m : X → [0, 1] du.o.c goi l`<br /> ´<br /> ’<br /> Dinh ngh˜ 1. Cho dai sˆ gia tu<br /> ıa<br /> a<br /> .<br /> . a<br /> . o<br /> .<br /> . cua c´c phˆn tu. trong X nˆu:<br /> `<br /> ´<br /> h`m dˆ do t´ m` ’ a<br /> a<br /> a ’<br /> o<br /> ınh o<br /> e<br /> .<br /> − ) + f m(c+ ) = 1 v`<br /> (fm1) f m(c<br /> a<br /> f m(hu) = f m(u), ∀u ∈ X ;<br /> h∈H<br /> <br /> o<br /> a<br /> e<br /> (fm2) f m(x) = 0, v´.i moi x sao cho H(x) = {x}. D˘c biˆt, f m(0) = f m(W ) =<br /> .<br /> .<br /> .<br /> f m(1) = 0;<br /> f m(hy)<br /> f m(hx)<br /> ’ e a<br /> =<br /> (fm3) ∀x, y ∈ X, ∀h ∈ H,<br /> , ty lˆ n`y khˆng phu thuˆc v`o x, y v`<br /> o<br /> o a<br /> a<br /> .<br /> .<br /> .<br /> f m(x)<br /> f m(y)<br /> ’<br /> du.o.c goi l` dˆ do t´ m`. cua gia tu. h, k´ hiˆu l` µ(h).<br /> ınh o ’<br /> y e a<br /> .<br /> .<br /> . . a o<br /> <br /> ˜<br /> `<br /> ˆ<br /> ´<br /> ˆ<br /> `<br /> NGUYEN CAT HO, PHAM THANH HA<br /> .<br /> <br /> 42<br /> <br /> ’<br /> `<br /> `<br /> ’ a ’ e o ınh o<br /> a a<br /> Diˆu kiˆn (fm1) c´ ngh˜ l` c´c phˆn tu. sinh v` c´c gia tu. l` du dˆ mˆ h` h´a ng˜.<br /> e<br /> e<br /> o<br /> ıa a a<br /> a ’<br /> u<br /> .<br /> .c cua c´c biˆn vˆt l´. Tˆp gia tu. H v` hai phˆn tu. sinh nguyˆn<br /> ´ .<br /> `<br /> `<br /> ’<br /> e a y<br /> a<br /> e<br /> a<br /> a ’<br /> ngh˜ cua miˆn gi´ tri thu ’ a<br /> ıa ’<br /> e<br /> a . .<br /> .<br /> ’<br /> ´<br /> ’<br /> ’ e<br /> ’ a o `<br /> ’<br /> thuy du dˆ phu to`n bˆ miˆn gi´ tri thu.c cua biˆn ngˆn ng˜.. Vˆ tru.c gi´c, ta c´ diˆu kiˆn<br /> e<br /> a . .<br /> e<br /> e<br /> e<br /> o<br /> u ` .<br /> e<br /> a<br /> o `<br /> .<br /> .<br /> ’ hiˆn su. t´c dˆng cua gia tu. h n`o d´ v`o c´c kh´i niˆm m`. l` giˆng nhau<br /> ´<br /> ’<br /> ’<br /> (fm2), (fm3) thˆ e . a o<br /> e .<br /> a o a a<br /> a e<br /> o a o<br /> .<br /> .<br /> (khˆng phu thuˆc v`o kh´i niˆm m`.).<br /> o<br /> o a<br /> a e<br /> o<br /> .<br /> .<br /> .<br /> `<br /> e<br /> a a<br /> o<br /> ı<br /> o e<br /> o<br /> Mˆnh dˆ 1. Cho fm l` h`m dˆ do t´nh m`. trˆn X. Ta c´:<br /> e<br /> .<br /> .<br /> i) f m(hx) = µ(h)f m(x), ∀x ∈ X;<br /> ii) f m(c− ) + f m(c+ ) = 1;<br /> iii)<br /> f m(hi c) = f m(c) v´.i c ∈ {c− , c+ };<br /> o<br /> −q i p, i=0<br /> <br /> iv)<br /> <br /> f m(hi x) = f m(x) v´.i x ∈ {c− , c+ };<br /> o<br /> <br /> −q i p, i=0<br /> <br /> v)<br /> <br /> µ(hi ) = α v`<br /> a<br /> −q i −1<br /> <br /> 1 i p µ(hi )<br /> <br /> = β, trong d´ α, β > 0 v` α + β = 1.<br /> o<br /> a<br /> <br /> ´<br /> Dinh ngh˜ 2. H`m dˆ u sign : X → {−1, 0, 1} du.o.c dinh ngh˜ dˆ quy nhu. sau:<br /> ıa<br /> a<br /> a<br /> ıa e<br /> . .<br /> .<br /> .<br /> − ) = −1, sign(c+ ) = +1;<br /> i) sign(c<br /> ´<br /> ´<br /> ii) sign(h hx) = −sign(hx) nˆu h ˆm dˆi v´.i h v` h hx = hx;<br /> e<br /> a<br /> o o<br /> a<br /> .o.ng dˆi v´.i h v` h hx = hx;<br /> ´<br /> ´<br /> e<br /> o o<br /> a<br /> iii) sign(h hx) = sign(hx) nˆu h du<br /> ´<br /> iv) sign(h hx) = 0 nˆu h hx = hx.<br /> e<br /> `<br /> ´<br /> ´<br /> ’<br /> a `<br /> a ’<br /> Mˆnh dˆ 2. V´.i moi gia tu. h v` phˆn tu. x ∈ X, nˆu sign(hx) = +1 th` hx > x v` nˆu<br /> e<br /> e<br /> o<br /> e<br /> ı<br /> a e<br /> .<br /> .<br /> sign(hx) = −1 th` hx < x.<br /> ı<br /> Dinh ngh˜ 3. Cho f m l` h`m dˆ do t´ m`. trˆn X . Mˆt h`m dinh lu.o.ng ng˜. ngh˜ v<br /> ıa<br /> a a<br /> o<br /> ınh o e<br /> o a<br /> u<br /> ıa<br /> .<br /> .<br /> .<br /> .<br /> .<br /> ´t ho.p v´.i f m) du.o.c dinh ngh˜ nhu. sau:<br /> o<br /> trˆn X (kˆ .<br /> e<br /> e<br /> ıa<br /> . .<br /> o<br /> i) v(W ) = θ = f m(c− ), v(c− ) = θ − αf m(c− ), v(c+ ) = θαf m(c+ ), v´.i 0 < θ < 1,<br /> j<br /> <br /> ii) v(hj x) = v(x) + sign(hj x){<br /> <br /> f m(hi x) − ω(hj x)f m(hj x)}, j ∈ [−q ∧ p],<br /> <br /> i=sign(j)<br /> <br /> trong d´, ω(hj x) =<br /> o<br /> v` j = 0}.<br /> a<br /> <br /> 1<br /> 1 + sign(hj x)sign(hp hj x)(β − α) ∈ {α, β}, [−q ∧ p] = {j : −q<br /> 2<br /> <br /> j<br /> <br /> p<br /> <br /> `<br /> `<br /> a ’<br /> Mˆnh dˆ 3. V´.i moi phˆn tu. x ∈ X ta c´ 0 v(x) 1.<br /> e<br /> e<br /> o<br /> o<br /> .<br /> .<br /> ’<br /> `<br /> ´<br /> ’<br /> a<br /> 2.3. Phu.o.ng ph´p diˆu khiˆ n m`. su. dung dai sˆ gia tu.<br /> e<br /> e<br /> o ’ .<br /> . o<br /> ’<br /> ˜<br /> ´<br /> ´<br /> ´<br /> ’<br /> ’ a<br /> Dai sˆ gia tu. cung cˆ p mˆt co. so. to´n hoc cho viˆc biˆu diˆn ng˜. ngh˜ c´c t`. cua biˆn<br /> a<br /> o<br /> e<br /> e<br /> e<br /> u<br /> ıa a u ’<br /> e<br /> . o<br /> .<br /> .<br /> .<br /> . v` h` th´.c h´a t´ m`. ngˆn ng˜., t`. d´ xˆy du.ng dˆ do t´ m`. mˆt c´ch ho.p l´<br /> o<br /> ınh o o a<br /> u u o a .<br /> ngˆn ng˜ a ınh u o ınh o o<br /> o<br /> u<br /> .<br /> .<br /> . y<br /> ’<br /> ˜<br /> ’ o o ınh o<br /> ’<br /> ([4,5]). Trˆn co. so. d´, mˆ h` m`. (1) - bang FAM (Fuzzy Associate Memory) du.o.c biˆ u diˆn<br /> e<br /> e<br /> e<br /> .<br /> .c, goi l` bang gi´ tri ng˜. ngh˜ dinh lu.o.ng SAM (Simanticization<br /> qua mˆt bang gi´ tri thu<br /> o ’<br /> a . .<br /> a . u<br /> ıa .<br /> .<br /> . a ’<br /> .<br /> .o.ng ph´p diˆu khiˆ n su. dung dai sˆ gia tu. tuˆn theo<br /> ’ ’ .<br /> `<br /> ´<br /> ’ a<br /> e<br /> e<br /> Associate Memory). Nh` chung, phu<br /> ın<br /> a<br /> . o<br /> .´.c sau ([9, 10]):<br /> c´c bu o<br /> a<br /> ˜ ´<br /> ´<br /> ’<br /> Bu.´.c 1. Xˆy du.ng c´c dai sˆ gia tu. cho mˆi biˆn ngˆn ng˜..<br /> o<br /> a<br /> a . o<br /> o e<br /> o<br /> u<br /> .<br /> .´.c 2. T´ to´n c´c gi´ tri ng˜. ngh˜ dinh lu.o.ng cho c´c biˆn ngˆn ng˜. du.a trˆn dinh<br /> ´<br /> a<br /> e<br /> o<br /> u .<br /> e .<br /> ınh a a<br /> a . u<br /> ıa .<br /> Bu o<br /> .<br /> ` dˆ do t´ m`. v` h`m dinh lu.o.ng ng˜. ngh˜<br /> ıa.<br /> u<br /> ınh o a a<br /> ngh˜ vˆ o<br /> ıa e .<br /> .<br /> .<br /> ’<br /> ’<br /> ’<br /> ’ ´<br /> a<br /> Bu.´.c 3. Xˆy du.ng c´c gia tu. u.ng v´.i c´c tˆp m`., chuyˆn dˆ i bang FAM th`nh bang SAM.<br /> o<br /> a<br /> a<br /> o a a<br /> o<br /> e o ’<br /> .<br /> .<br /> <br /> .<br /> .<br /> ’<br /> ´<br /> ´<br /> ’.<br /> ’. `<br /> ´<br /> ˆ<br /> ˆ<br /> GIAI PHAP KET HO P SU DUNG DAI SO GIA TU VA MANG NO RON RBF<br /> .<br /> .<br /> .<br /> .<br /> <br /> 43<br /> <br /> ’<br /> ’<br /> o<br /> a<br /> a .<br /> Bu.´.c 4. Xˆy du.ng khoang x´c dinh c´c gia tu..<br /> a<br /> .<br /> ’ ’<br /> Bu.´.c 5. Xˆy du.ng du.`.ng cong ng˜. ngh˜ dinh lu.o.ng trˆn co. so. bang SAM.<br /> o<br /> a<br /> o<br /> u<br /> ıa .<br /> e<br /> .<br /> .<br /> ’<br /> ´<br /> ’ `<br /> e<br /> e<br /> e<br /> o<br /> a .<br /> e<br /> o<br /> u<br /> ıa .<br /> Bu.´.c 6. X´c dinh kˆt qua diˆu khiˆ n du.a trˆn du.`.ng cong ng˜. ngh˜ dinh lu.o.ng.<br /> .<br /> .<br /> ’<br /> ’.<br /> ’.<br /> ´<br /> ’<br /> ˆ<br /> ˆ<br /> ˆ<br /> ´<br /> E<br /> 3. GIAI PHAP DI` U KHIEN SU DUNG DAI SO GIA TU<br /> .<br /> .<br /> .<br /> `<br /> ˆ<br /> VA MANG NO RON NOI SUY RBF<br /> .<br /> .<br /> e .<br /> 3.1. So. lu.o.c vˆ mang no.ron RBF<br /> . `<br /> `<br /> ´<br /> Phu.o.ng ph´p nˆi suy RBF (Radial Basis Function) do Powell dˆ xuˆ t ([10]) v` du.o.c<br /> a<br /> o<br /> e<br /> a<br /> a<br /> .<br /> .<br /> .i thiˆu nhu. l` mang no.ron trong [2], dˆn nay d˜ l` mˆt cˆng cu h˜.u<br /> ´<br /> Broomhead v` Low gi´<br /> a<br /> o<br /> e<br /> a .<br /> e<br /> a a o o<br /> .<br /> .<br /> . u<br /> ’ .<br /> ´<br /> `<br /> ´<br /> a a ’ a<br /> e<br /> e a<br /> o<br /> a<br /> hiˆu dˆ nˆi suy v` xˆp xı h`m nhiˆu biˆn v` dang du.o.c u.ng dung rˆng r˜i ([1, 2]).<br /> e e o<br /> . ´<br /> .<br /> .<br /> .<br /> M<br /> Phu.o.ng ph´p n`y t` h`m nˆi suy ϕ du.´.i dang ϕ(x) =<br /> a a ım a<br /> o<br /> o .<br /> wk h( x − v k , σk ) + w0 sao<br /> .<br /> k=1<br /> `<br /> cho ϕ(xk ) = y k , ∀k = 1, ..., N , trong d´ {xk }N l` tˆp vecto. trong khˆng gian n - chiˆu<br /> o<br /> o<br /> e<br /> .<br /> k=1 a a<br /> .o.c goi l` c´c mˆc nˆi suy) v` y k = f (xk ) l` gi´ tri do du.o.c cua h`m f cˆn nˆi suy, h`m<br /> `<br /> ´ .<br /> ’ a<br /> a a .<br /> a o<br /> a<br /> (du .<br /> o o<br /> a<br /> .<br /> . a a<br /> .<br /> .c h( x − v k , σ ) du.o.c goi l` h`m co. so. b´n k´ v´.i tˆm v k (M<br /> ’ a ınh o a<br /> thu<br /> N ), wk v` σk l`<br /> a<br /> a<br /> k<br /> .<br /> .<br /> . a a<br /> ´ a<br /> ´<br /> c´c gi´ tri tham sˆ cˆn t`<br /> a<br /> a .<br /> o ` ım. Trong d´, dang h`m b´n k´nh thˆng dung nhˆ t l` h`m Gauss<br /> o .<br /> a<br /> a ı<br /> o<br /> a a a<br /> .<br /> 2<br /> 2<br /> ’<br /> ´ .<br /> h(u, σ) = e−u /σ v` tˆm l` c´c mˆc nˆi suy (khi d´ M = N ). H`m nˆi suy n`y c´ u.u diˆ m<br /> a a a a<br /> o o<br /> o<br /> a<br /> o<br /> a o<br /> e<br /> .<br /> ’<br /> ’<br /> ´<br /> ´<br /> a<br /> a<br /> l` tˆ ng c´c b` phu.o.ng sai sˆ cua n´ khˆng c´ cu.c tiˆu dia phu.o.ng nˆn dˆn nay c´c thuˆt<br /> a o<br /> a ınh<br /> o ’ o o<br /> o .<br /> e .<br /> e e<br /> .<br /> .`.ng theo hu.´.ng t`m cu.c tiˆu sai sˆ tˆ ng c´c b` phu.o.ng ho˘c giai<br /> ’<br /> ´<br /> ´ ’<br /> ’<br /> to´n huˆ n luyˆn mang thu o<br /> a<br /> a<br /> e<br /> o<br /> ı<br /> e<br /> o o<br /> a ınh<br /> a<br /> .<br /> .<br /> .<br /> .<br /> .c tiˆp hˆ phu.o.ng tr` nˆi suy ([11]).<br /> ´ .<br /> tru e e<br /> ınh o<br /> .<br /> .<br /> ´ ´<br /> 3.2. Thiˆt kˆ mang RBF<br /> e e .<br /> ´<br /> ´<br /> ´<br /> e<br /> e<br /> u<br /> a .<br /> 3.2.1. Kiˆn tr´c: V´.i viˆc xˆ p xı h`m n biˆn f : Rn → R, kiˆn tr´ c mang x´c dinh nhu. sau<br /> e<br /> u<br /> o e a ’ a<br /> .<br /> . ´<br /> w1<br /> y<br /> wm<br /> <br /> t ng vào<br /> các nút<br /> <br /> t ng nơron<br /> n<br /> <br /> T ng vào có n nút ng v i n bi n<br /> c a hàm.<br /> T ng n có m nơron b ng v i s<br /> m c n i suy, các m c n i suy ư c<br /> xem như các tâm m ng.<br /> T ng ra có 1 nơron<br /> Các nơ ron gi a các t ng ư c n i<br /> v i nhau b i các tr ng s liên k t wk,<br /> k=1..m<br /> <br /> t ng nơron<br /> ra<br /> <br /> H` 1. Mˆ h` mang nˆi suy RBF<br /> ınh<br /> o ınh .<br /> o<br /> .<br /> ´<br /> 3.2.3. Huˆ n luyˆn mang<br /> a<br /> e<br /> .<br /> .<br /> ´<br /> Viˆc huˆ n luyˆn mang tˆp trung v`o viˆc x´c dinh c´c b´n k´ σk u.ng v´.i c´c tˆm mang<br /> e<br /> a<br /> e<br /> a<br /> a<br /> e a .<br /> a a ınh<br /> ´<br /> o a a<br /> .<br /> .<br /> .<br /> .<br /> .<br /> .<br /> ´ kˆt nˆi wk . Sau dˆy l` mˆt thuˆt to´n huˆ n luyˆn mang ([6]).<br /> ´ o<br /> ´<br /> ´<br /> v` c´c trong sˆ e<br /> a a<br /> o<br /> a a o<br /> a<br /> a<br /> a<br /> e<br /> .<br /> .<br /> .<br /> .<br /> .<br /> Algorithm 1. X´c dinh b´n k´<br /> a .<br /> a ınh<br /> ´ .<br /> Input: C´c mˆc nˆi suy (tˆm mang) xk = (xk , ..., xk ), k = 1...m<br /> a<br /> o o<br /> a<br /> .<br /> n<br /> 1<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2