Giáo án môn toán lớp 9 – Đại số bài 2: căn thức bậc hai và hằng đẳng thức
lượt xem 11
download
Nhằm giúp quý thầy cô soạn giáo án, tài liệu Giáo án môn toán lớp 9 – Đại số bài 2: căn thức bậc hai và hằng đẳng thức giới thiệu cùng quý thầy cô. Nhằm giúp HS biết cách tìm điều kiện xác định (hay điều kiện có nghĩa) của căn bậc hai và có kĩ năng thực hiện điều đó khi biểu thức A không phức tạp.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo án môn toán lớp 9 – Đại số bài 2: căn thức bậc hai và hằng đẳng thức
- Giáo án Toán 9 – Đại số Tiết 2: CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC A2 A I. Mục tiêu: 1. Kiến thức: Biết cách tìm điều kiện xác định ( hay điều kiện có nghĩa ) của A. Biết cách chứng minh định lý a 2 a 2. Kỹ năng: Thực hiện tìm điều kiện xác định của A khi A không phức tạp (bậc nhất, phân thức mà tử hoặc mẫu là bậc nhất còn mẫu hay tử còn lại là hằng số hoặc bậc nhất, bậc hai dạng a2+ m hay - ( a2 + m ) khi m dương và biết vận dụng hằng đẳng thức A 2 A để rút gọn biểu thức . 3. Thái độ: tự giác tích cực trong học tập, II.Chuẩn bị của thầy và trò GV chuẩn bị bảng phụ có hệ thống câu hỏi trắc nghiệm trong bài kiểm tra, KHBH HS: Chuẩn bị bài theo HD tiết trước của GV PP – KT dạy học chủ yếu: Thực hành luyện tập, vấn đáp, III. Tiến trình bài học trên lớp Ổn định lớp 1: Kiểm tra bài cũ HS1: Nêu định nghĩa căn bậc hai số học của số không âm a. Muốn chứng minh x a ta phải chứng minh những điều gì? Giải bài tập: Tìm những khẳng định đúng trong các khẳng định sau: a) Căn bậc hai của 0,36 là 0,6. d) 0,36 0,6 b) Căn bậc hai của 0,36 là 0,06. e) 0,36 0,6 c) Căn bậc hai của 0,36 là 0,6 và -0,6 HS2: Phát biểu định lý so sánh hai căn bậc hai số học? . Giải bài tập: So sánh 1 và 2 rồi so sánh 2 và 2 +1 So sánh 2 và 3 rồi so sánh 1 và 3 -1
- Giáo án Toán 9 – Đại số 2. Bài mới Hoạt động của GV và HS Nội dung
- Giáo án Toán 9 – Đại số + GV cho HS thực hiện?1(SGK) 1: Căn thức bậc hai AB= 25 x 2 ? Vì sao? ?1 Trong tam giác vuông ABC có : AB2 + BC2 = AC2 ( Py-ta go) AB2 +x2 = 52 =>AB = 25 x 2 ( Vì AB > 0) GV giới thiệu 25 x 2 là căn thức bậc hai của 25 - x2 còn 25 - x2 là biểu thức lấy căn hay biểu thức dới dấu căn. Tổng quát: Với A là một biểu thức đại + GV cho HS đọc tổng quát. số, ngời ta gọi A là căn thức bậc hai + HS nêu nhận xét tổng quát? của A, còn A đợc gọi là biểu thức lấy -HS nêu lại nhận xét tổng quát căn hay biểu thức dới dấu căn. + GV: A xác định khi nào? A x¸c ®Þnh khi nµo? - GV lấy ví dụ minh hoạ và hướng dẫn A x¸c ®Þnh( hay cã nghÜa) khi A lÊy HS cách tìm điều kiện để một căn thức gi¸ trÞ kh«ng ©m được xác định . Ví dụ 1 : (sgk) ? Tìm điều kiện để 3x 0 . 3 x là căn thức bậc hai của 3x HS đứng tại chỗ trả lời . 3 x xác định khi 3x 0 x 0 . Vậy căn thức bậc hai trên xác định khi nào? GV: Nêu ví dụ 1 SGK, có phân tích theo giới thiệu ở trên +GV nhấn mạnh a chỉ xác định khi a0 Vậy A xác định hay có nghĩa khi A lấy
- Giáo án Toán 9 – Đại số giá tri không âm. A xác định (hay có nghĩa) khi A 0 + HS: làm bài tập ?2 Với giá trị nào của x thì 5 2 x xác định? Gọi một HS trả lời kết quả 5 2 x có nghĩa 5 – 2x 0 2. H»ng ®¼ng thøc A2 A x 5/2 §Þnh lý: GV cho HS làm bài tập ?3 Víi mäi sè a, ta cã a 2 = a HA làm bài cá nhân Chøng minh: a R Ta cã a 0 a GV gọi 1HS lên bảng điền vào bảng của + NÕu a 0 th× a = a => a 2 = a2 ? 3: + NÕu a < 0 th× a = - a a -2 -1 0 2 3 => a 2 = (- a)2 = a a2 4 1 0 4 9 2 2 1 0 2 3 VËy a 2 = a2 Víi a a + Cho HS quan sát kết quả trong bảng và nhận xét quan hệ a 2 và a + GV giới thiệu định lý và hướng dẫn chứng minh + Để chứng minh CBHSH của a2 bằng giá trị tuyệt đối của a ta cần chứng minh những điều kiện gì ? GV trở lại ? 3 để giải thích: 22 = 2 = 2 0= 0 =0 32 = 3 = 3
- Giáo án Toán 9 – Đại số +GV hỏi thêm: Khi nào xảy ra trường hợp ”Bình phương một số, rồi khai * Ví dụ 2 (sgk) phương kết quả đó thì lại được số ban a) 12 2 12 12 đầu” ? b) (7) 2 7 7 +GV trình bày ví dụ 2 và nêu ý nghĩa: * Ví dụ 3 (sgk) Không cần tính căn bậc hai mà vẫn tìm 2 được giá trị của căn bậc hai ( nhờ biến a) ( 2 1) 2 1 2 1 (vì đổi về biểu thức không chứa căn bậc 2 1) hai) b) (2 5 ) 2 2 5 5 2 (vỡ +HS làm theo nhóm bàm bài tập 7, đại 5 >2) diện nhóm lên trình bày kết quả trên VD 4:(SGK trang 10) bảng cả lớp nhận xét Rút gọn +GV trình bày câu a ví dụ 3 và hướng dẫn HS làm câu b Ví dụ 3 a. x 22 với x 2 + HS làm theo nhóm bài tập 8 câu a và ta có x 22 = | x-2| = x-2 (do x 2) b, đại diện nhóm lên bảng trình bày kết b. a 6 với a < 0 quả của nhóm mình.Lớp nhận xét ta có a 6 =| a3 | =- a3 ( do a < 0) +GV giới thiệu câu a) Ví dụ 4 và yêu *Chú ý: Một cách tổng quát, với A là cầu HS làm câu b một biểu thức ta có A 2 A nếu A 0 A 2 A nếu A < 0 4. Hướng dẫn học sinh học và làm bài tập ở nhà + HS làm các bài tập 6, 8c, 8d, 9, 10 SGK trang 10
- Giáo án Toán 9 – Đại số + Chuẩn bị bài tập cho tiết sau luyện tập từ bài 11-15 SGK và làm bài tập 9, 10 SBT Học thuộc định lý, khái niệm, công thức trong bài học Xem lại các ví dụ và bài tập đã chữa trên lớp Rút kinh nghiệm sau bài học ……………………………………………………………………………………… ……………………………………………………………………………………… ………………………………………………………………………………………. Tuần 2: Ngày soạn 25/8/2013 Tiết 3: LUYỆN TẬP I. Mục tiêu : 1. Kiến thức: Học sinh được củng cố lại các khái niệm đã học qua các bài tập . 2. Kỹ năng: Rèn kỹ năng tính căn bậc hai của một số, một biểu thức, áp dụng hằng đẳng thức A 2 A để rút gọn một số biểu thức đơn giản. Biết áp dụng phép khai phương để giải bài toán tìm x , tính toán . 3. Thái độ: Chú ý, tích cực tự giác hợp tác tham gia học tập trên lớp II. Chuẩn bị: - GV: KHBH, bảng phụ bài tập 11, MTBT - HS: Học bài cũ và chuẩn bị bài tập theo y/c, MTBT PP – KT dạy học chủ yếu: Thực hành luyện tập, vấn đáp III. Tiến trình bài học trên lớp: Ổ định lớp 1. Kiểm tra bài cũ: HS1: Nêu điều kiện để A có nghĩa? 3 HS1: KQ a ;a 0 2 5a Áp dụng tìm a để 2a 3 ; có 4
- Giáo án Toán 9 – Đại số nghĩa? HS2: Điền vào chỗ (...) để được khẳng HS2: định đúng: A2 = |A| = A nếu A 0; = -A nếu A < 0; A2 = |... | = ... nếu A 0; = ... nếu A < 0; Rút gọn: (3 11)2 11 3 HS3: 4 x 2 6 Áp dụng: Rút gọn (3 11)2 4x2 = 36 2 x = 9 x = 3; -3) HS3: Tìm x biết 4 x 2 6 (4x2 = 36 .... x = 3) HS nhận xét. GV nhận xét, cho điểm. 2. Bài mới: LUYỆN TẬP Hoạt động của GV và HS Nội dung - GV yêu cầu HS đọc đề bài 10 SGK Luyện tập sau đó nêu cách làm . Bài tập 10 (sgk-11) ? Để chứng minh đẳng thức trên ta làm a) Ta có : như thế nào ? VP = 4 2 3 3 2 3 1 ( 3 1) 2 VT GV gợi ý : Biến đổi VP VT . Vậy đẳng thức đã được CM . Có : 4 - 2 3 3 2 3 1 = ? b) VT = 4 2 3 3 - Tương tự em hãy biến đổi chứng minh = ( 3 1) 2 3 3 1 3 (b) ? Ta biến đổi như thế nào ? = 3 1 3 1 = VP Gợi ý : dùng kết quả phần (a ). Vậy VT = VP ( Đcpcm) - GV gọi HS lên bảng làm bài sau đó cho nhận xét và chữa lại . Nhấn mạnh lại cách chứng minh đẳng thức . Bài tập 11 ( sgk -11)
- Giáo án Toán 9 – Đại số - GV treo bảng phụ ghi đầu bài bài tập a) 16 . 25 196 : 49 11 ( sgk ) gọi HS đọc đầu bài sau đó nêu = 4.5 + 14 : 7 = 20 + 2 = 22 cách làm . b) 36 : 2.32.18 169 ? Hãy khai phương các căn bậc hai trên = 36 : 18.18 13 = 36 : 18 - 13 sau đó tính kết quả . = 2 - 13 = -11 - GV cho HS làm sau đó gọi lên bảng c) 81 9 3 chữa bài . GV nhận xét sửa lại cho HS . Bài tập 12 ( sgk - 11) a) Để căn thức 2 x 7 có nghĩa ta phải có : - GV gọi HS đọc đề bài sau đó nêu cách làm . 2x + 7 0 2x - 7 7 ? Để một căn thức có nghĩa ta cần phải x- 2 có điều kiện gì . b) Để căn thức 3 x 4 có nghĩa ? Hãy áp dụng ví dụ đã học tìm điều . Ta phái có : - 3x + 4 0 kiện có nghĩa của các căn thức trên . 4 - GV cho HS làm tại chỗ sau đó gọi - 3x - 4 x 3 từng em lên bảng làm bài . Hướng dẫn 4 Vậy với x thì căn thức trên có nghĩa cả lớp lại cách làm . 3 Gợi ý : Tìm điều kiện để biểu thức trong Bài tập 13 ( sgk - 11 ) căn không âm a) Ta có : 2 a 2 5a với a < 0 - GV tổ chức chữa phần (a) và (b) còn = 2 a 5a = - 2a - 5a = - 7a lại cho HS về nhà làm tiếp . ( vì a < 0 nên a = - a ) - GV ra bài tập HS suy nghĩ làm bài . c) Ta có : 9a 4 3a 2 = 3a2 + 3a2 ? Muốn rút gọn biểu thức trên trước hết = 3a2 + 3a2 = 6a2 ta phải làm gì . ( vì 3a2 0 với mọi a ) Gợi ý : Khai phương các căn bậc hai .
- Giáo án Toán 9 – Đại số Chú ý bỏ dấu trị tuyệt đối . - GV gọi HS lên bảng làm bài Bài 13 (SGK/ 11). theo hướng dẫn. Các HS khác Rút gọn biểu thức. nêu nhận xét. a.)2 a 2 - 5a với a < 0 Bài 13: Rút gọn các bỉểu thức sau: ta có 2 a 2 - 5a = 2 a - 5a a, 2 a 2 5a với a
- Giáo án Toán 9 – Đại số 4. Hướng dẫn HS học và làm bài tập về nhà + Ôn lại các kiến thức của bài §1 và §2 + Luyện tập lại 1 số dạng bài tập như tìm ĐK để biểu thức có nghĩa, rút gọn biểu thức, phân tích đa thức thành nhân tử, giải phương trình. +Làm bài tập còn lại ở SGKvà SBT + Chuẩn bị cho bài “Liên hệ giữa phép nhân và phép khai phương” 1 GV gợi ý bài 12c, 12d 12c) có nghĩa khi nào ? 1 x + Tử là 1 > 0 vậy mẫu là –1 + x > 0 x > 1 d) 1 x có nghĩa khi nào ? x2 0 với x vậy em có nhận xét gì về biểu thức 1 + x2 ? 2 2 1 x 2 có nghĩa 1+ x 0 Vì x 0 với x 2 1+ x 1 với x Vậy 1 x có nghĩa với x Rút kinh nghiệm sau bài học ……………………………………………………………………………………… ……………………………………………………………………………………… ……………………………………………………………………………………….
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo án môn Toán lớp 9 – Đại số: Rút gọn biểu thức chứa căn thức bậc hai
8 p | 943 | 57
-
Giáo án môn Toán lớp 9 - bài: Rút gọn biểu thức chứa căn thức bậc hai
8 p | 643 | 23
-
Bài 1, chương 4 giáo án môn Toán lớp 9: Hàm số y=ax2
7 p | 607 | 12
-
Giáo án môn Toán lớp 9 về một số hệ thức về cạnh và đường cao trong tam giác vuông
8 p | 374 | 9
-
Giáo án môn Toán lớp 1: Tuần 9
7 p | 20 | 4
-
Giáo án môn Toán lớp 10 sách Chân trời sáng tạo - Chương 9: Bài 4
11 p | 23 | 4
-
Giáo án môn Toán lớp 10 sách Chân trời sáng tạo - Chương 9: Bài 3
8 p | 18 | 4
-
Giáo án môn Toán lớp 10 sách Chân trời sáng tạo - Chương 9: Bài 2
14 p | 18 | 3
-
Giáo án môn Toán lớp 10 sách Kết nối tri thức: Bài 9
12 p | 58 | 3
-
Giáo án môn Toán lớp 7 sách Kết nối tri thức: Bài 9
15 p | 16 | 3
-
Giáo án môn Toán lớp 6 sách Kết nối tri thức: Bài 9
6 p | 17 | 3
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 9: Bài tập cuối chương 9
4 p | 19 | 3
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 9: Bài 3
4 p | 23 | 3
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 9: Bài 2
6 p | 13 | 3
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 9: Bài 1
6 p | 16 | 3
-
Giáo án môn Toán lớp 10 sách Chân trời sáng tạo - Chương 9: Bài 1
10 p | 20 | 3
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 1: Bài 8
7 p | 13 | 3
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 1: Bài 9
9 p | 22 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn