Giáo trình hình thành quy trình điều chế các phản ứng nhiệt hạch hạt nhân hydro p3
lượt xem 5
download
Tham khảo tài liệu 'giáo trình hình thành quy trình điều chế các phản ứng nhiệt hạch hạt nhân hydro p3', khoa học tự nhiên, hoá học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình hình thành quy trình điều chế các phản ứng nhiệt hạch hạt nhân hydro p3
- Tõ b¶ng sè liÖu (Nu, Re, Gr. Pr) ng−êi ta cã thÓ t×m c«ng thøc rhùc nghiÖm ë d¹ng Nu = CRenGrmPrp b»ng c¸ch lÇn l−ît x¸c ®Þnh c¸c sè mò n, m, p vµ h»ng sè C trªn c¸c ®å thÞ logarit. 10.3.2.1. Khi Nu = f(Re) = CRen Trªn ®å thÞ (lgNu, lgRe) ph−¬ng tr×nh trªn cã d¹ng ®−êng th¼ng lgNu = nlgRe + lgC, víi n, C ®−îc x¸c ®Þnh nh− sau: - BiÔu diÔn c¸c ®iÓm thùc nghiÖm trªn ®å thÞ (lgNu,lgRe) - X¸c ®Þnh ®−êng th¼ng ®i qua tËp ®iÓm thùc nghiÖm nãi trªn theo ph−¬ng ph¸p b×nh ph−¬ng nhá nhÊt. - T×m gãc nghiªng β cña ®−êng th¼ng vµ giao ®iÓm C0 = lgC víi trôc lgNu, nhê ®ã t×m ®−îc n = tgβ vµ C = 10C0 Khi miÒn biÕn thiªn cña Re kh¸ lín, lµm thay ®æi chÕ ®é chuyÓn ®éng ng−êi ta chia miÒn ®ã ra c¸c kho¶ng ⎣Re i ÷ Re i +1 ⎦ kh¸c nhau vµ t×m ni = tgβi, Ci = 10C0i cho mçi kho¶ng. 111
- 10.3.2.2. Khi Nu = f(Re,Gr)= CrenGrm §Ó x¸c ®Þnh hµm 2 biÕn trªn, cã thÓ lÇn l−ît t×m ra n, m, C trªn hai ®å thÞ logarit nh− sau: 1. T×m n theo hä c¸c ®−êng th¼ng d¹ng lgNu = nlgRe + lg (CGmi) khi Gr = const trªn ®å thÞ (lgNu, lgNu, lgRe) b»ng c¸ch: - Cè ®Þnh Gr = Gri = const ®Ó x¸c ®Þnh ®−êng th¼ng: lgNui = nilgRei + lg(CGim) nh− trªn vµ t×m ®−îc ni = tgβi, - Thay ®æi Gri, ∀i = 1÷k, sÏ cã 1 hä k ®−êng th¼ng víi ®é dèc ni, ∀i = 1÷k 1k ∑ ni. vµ x¸c ®Þnh n nh− gi¸ trÞ trung b×nh n k i =1 Nu Nu 2. T×m m vµ C theo ®−êng th¼ng lg n = mlgGr + lgC trªn ®å thÞ lg n , Re Re lgGr nh− tr−êng hîp hµm 1 biÕn, sÏ ®−îc m = tgγ víi C = 10C0. 10.3.2.3. Khi Nu = f(Re,Gr,Pr)= CrenGrmPrp §Ó x¸c ®Þnh hµm 3 biÕn trªn, cã thÓ t×m n, m, C theo tr×nh tù sau: - Cè ®Þnh Pr, Gr t¹i c¸c trÞ sè Prj, Gri kh¸c nhau, biÓu diÔn trªn to¹ ®é (lgNu, lgRe) sÏ ®−îc k hä ®−êng th¼ng d¹ng lgNu = nlgRe + lg(CGrm Prn) vµ t×m 1 k ⎛1 k ⎞ ∑ ⎜ k ∑ tgβ Þ ⎟ ; ®−îc sè mò n trung ba×nh theo n = k j=1 ⎝ i =1 ⎠ Nu - Cè ®Þnh Pr t¹i c¸c trÞ sè Prj kh¸c nhau, biÓu diÔn trªn to¹ ®é (lg , Re n 1k Nu = mlgGr vµ t×m ®−îc m = ∑ tgβ Þ . lgGr) sÏ ®−îc 1 hä ®−êng th¼ng lg Re n k j=1 112
- Nu -BiÓu diÔn k ®iÓm ®o trªn to¹ ®é (lg , lgPr) sÏ ®−îc hä ®−êng Re n Gr m Nu = p lg Pr + lg C . th¼ng d¹ng: lg Re n Gr m cã gãc nghiªng ϕ vµ giao ®iÓm c0 = lgc, nhê ®ã t×m ®−îc p = artgϕ vµ c = 10 c . 0 10.4. c¸c c«ng thøc thùc nghiÖm tÝnh α 10.4.1. bµi to¸n táa nhiÖt vµ c¸ch gi¶i - Bµi to¸n táa nhiÖt th−êng ®−îc ph¸t biÓu nh− sau: t×m hÖ sè táa nhiÖt α tõ bÒ mÆt cã vÞ trÝ vµ h×nh d¹ng cho tr−íc, ®−îc ®Æc tr−ng bëi kÝch th−íc x¸c ®Þnh l, cã nhiÖt ®é tw ®Õn m«i tr−êng chÊt láng hoÆc khÝ cho tr−íc cã nhiÖt ®é tf vµ vËn tèc chuyÓn ®éng c−ìng bøc lµ ω , nÕu cã t¸c nh©n c−ìng bøc. λ - Lêi gi¶i cña bµi to¸n trªn lµ α = Nu , víi Nu = f (Re,Gr,Pr) t×m theo l c«ng thøc thùc nghiÖm t−¬ng øng víi bµi to¸n ®· cho, trong ®ã c¸c gi¸ trÞ (λ, γ, β, Pr) ®−îc x¸c ®Þnh theo b¶ng th«ng sè vËt lÝ cña chÊt láng t¹i nhiÖt ®é x¸c ®Þnh theo quy ®Þnh cña c«ng thøc thùc nghiÖm. 10.4.2. C«ng thøc tÝnh táa nhiÖt tù nhiªn 10.4.2.1. Táa nhiÖn tù nhiªn trong kh«ng gian v« h¹n Kh«ng gian v« h¹n lµ kh«ng gian chøa chÊt láng cã chiÒu dµy ®ñ lín, ®Ó cã thÓ coi chÊt láng chØ trao ®æi nhiÖt víi bÒ mÆt ®ang xÐt. C«ng thøc chung cho c¸c mÆt ph¼ng, trô, c»u ®Æt th¼ng ®øng hoÆc n»m n ngang, cã d¹ng: Num = C(Gr, Pr) m Trong ®ã quy ®Þnh: NhiÖt ®é x¸c ®Þnh lµ: 1 [t ] = t m = ( t w + t f ). 2 KÝch th−íc x¸c ®Þnh lµ: ⎧h = chiÒu cao cña v¹ch hoÆc èng dÆt th¼ng døng [1] = ⎪ 4f ⎨ ⎪d u = d−êng kÝnh mÆt trô n¨m ngang hoÆc mÆt cÇu ⎩ C¸c sè c vµ n cho theo b¶ng bªn: (GrPr)m C n 10-3÷5.102 Khi tÊm ph¼ng n»m ngang vµ 1,18 1/8 táa nhiÖt lªn th× lÊy α n ↑ = 1,3α h , nÕu táa 5.102÷2. 107 0,54 1/4 NhiÖt xuèng d−íi th× lÊy α n ↓ = 0,7α h . 0,13 1/3 2. 107÷1013 113
- 10.4.2.2. Táa nhiÖn tù nhiªn trong kh«ng gian h÷u h¹n Kh«ng gian h÷u h¹n ®−îc hiÓu lµ 1 khe hÑp chøa chÊt láng cã chiÒu dµy δ nhá gi÷a 2 mÆt cã nhiÖt ®é kh¸c nhau t w > t w khiÕn cho chÊt láng võa nhËn 1 2 nhiÖn tõ mÆt nãng võa táa táa nhiÖt vµo mÆt l¹nh. L−îng nhiÖt truyÒn tõ mÆt nãng ®Õn mÆt l¹nh ®−îc tÝnh theo c«ng thøc dÉn nhiÖt qua v¸ch chÊt láng dµy δ víi hÖ sè dÉn nhiÖt t−¬ng ®−¬ng λtd, cho bëi c«ng thøc nghiÖm sau: λ td = λ m C(Gr Pr) n m C N [t ] = t m = 1 ( t w1 + t w 2 ) (Gr.Pr) m Víi: < 10 3 1 0 2 [l] = δ = chiÒu dµy khe hÑp 103 ÷ 1010 0,18 1/4 C vµ n ®−îc tÝnh theo b¶ng bªn. λ td q= ( t w1 − t w 2 ), W / m 2 Víi khe hÑp ph¼ng cã: δ 1w 1 − t w 2 q1 = , W / m. Víi khe hÑp trô cã: d2 1 1n 2πλ td d1 10.4.3. táa nhiÖt c−ìng bøc 10.4.3.1. Khi chÊt láng ch¶y ngang qua 1 èng Khi chÊt láng nhiÖt ®é tf ch¶y c−ìng bøc víi vËn tèc ω , lÖch 1 gãc ϕ so víi trôc èng cã ®−êng kÝnh ngoµi d, nhiÖt ®é tw th× c«ng thøc thùc nghiÖm cã d¹ng: 1/ 4 ⎛ prf ⎞ ⎜ ⎟ 0 , 38 Nu fd = C Re .εϕ n prf ⎜ pr ⎟ fd ⎝w ⎠ Trong ®ã quy ®Þnh [t] = tf ; [l] = d; C vµ n cho theo b¶ng sau: Refd C N 10÷10 0,5 0,5 3 103÷2.105 0,25 0,6 εα = f(ϕ) lµ sè hiÖu chØnh theo gãc ϕ = (trôc èng, ω ) cho theo ®å thÞ h×nh 10.4.3a. 10.4.3.2. Khi chÊt láng ch¶y ngang chïm èng Trong thiÕt bÞ trao ®æi nhiÖt, c¸c èng th−êng ®−îc bè trÝ theo chïm song song hoÆc so le. MÆt c¾t ngang cña mçi chïm cã d¹ng nh− H10.4.3.2, ®−îc ®Æc tr−ng bëi b−íc ngang s1, b−íc däc s2 ®−êng kÝnh èng d, sè hµng èng theo ph−¬ng dßng ch¶y n. 114
- HÖ sè táa nhiÖt α trung b×nh gi÷a chÊt láng vµ mÆt èng cã thÓ tÝnh theo c«ng thøc sau: 1 .0 ,15 ⎛ pr ⎞4 ⎛ d ⎞ n − 0,5 λ 0,26 Re 0,65 Prf0,33 ⎜ f ⎟⎜ ⎟ - Khi chïm song song α = , ⎟ ⎜S ⎟ ⎜ pr fd n d ⎠⎝2 ⎠ ⎝w 1 1/ 4 ⎛ pr ⎞ ⎛ S1 ⎞6 λ n − 0,7 0,41 Re 0, 6 ⎜ f ⎟ ⎜ ⎟ - Khi chïm sole víi s 1 /s 2 < 2 th×: α = ⎟ d, ⎜S fd ⎜ ⎟ n ⎝ prw ⎝2 ⎠ ⎠ Trong ®ã quy ®Þnh [t]=tf, [l]= d; n lµ sè hµng èng tÝnh theo ph−¬ng vËn tèc ω cña chÊt láng. 10.4.3.3. Khi chÊt láng ch¶y trong èng HÖ sè to¶ nhiÖt gi÷a chÊt láng cã nhiÖt ®é tf ch¶y víi vËn tèc ω bªn trong 1 èng hoÆc kªnh m−¬ng cã tiÕt diÖn bÊt kú f = const, chu vi −ít lµ u, dµI l, nhiÖt ®é tw ®−îc tÝnh theo c«ng thøc sau: 1 0 ⎛ pr ⎞4 ⎟ ε1 khi Re < 2300 (ch¶y tÇng) Nu fd = 0,15 Re 0,33 Prf0, 43 Grfd,1 ⎜ f ⎜ pr ⎟ fd ⎝w ⎠ 1 ⎛ pr ⎞ 4 Nu fd = 0,021 Re 0,8 Prf0, 43 ⎜ f ⎟ ε 1 khi Re > 2300 (ch¶y rèi), ⎜ pr ⎟ fd ⎝ w⎠ ⎛1 ⎞ 4f trong ®ã: [t ] = t f ; [l] = d = , ε1 lµ hÖ sè hiÖu chØnh theo chiÒu dµi, ε1 = f ⎜ , Re Ì ⎟ ⎝d u ⎠ cho theo b¶ng ë phÇn phô lôc. NÕu èng cong víi b¸n kÝnh cong R nh− ë ®o¹n cót hoÆc èng xo¾n ruét gµ th× hÖ sè to¶ nhiÖt trong èng cong lµ: ⎛ d⎞ α R = α t ε R = α t ⎜1 + 1,77 1 ⎟ , R⎠ ⎝ trong ®ã: α 1 lµ hÖ sè to¶ nhiÖt khi èng th¼ng tÝnh theo c¸c c«ng thøc trªn. 115
- Ch−¬ng 11. trao ®æi nhiÖt bøc x¹ 1.1.1. C¸c kh¸i niÖm c¬ b¶n 1.1.1.1. §Æc ®iÓm cña qu¸ tr×nh trao ®æi nhiÖt bøc x¹ Trao ®æi nhiÖt bøc x¹ (T§NBX) lµ hiÖn t−îng trao ®æi nhiÖt gi÷a vËt ph¸t bøc x¹ vµ vËt hÊp thô bøc x¹ th«ng qua m«i tr−êng truyÒn sãng ®iÖn tõ. Mäi vËt ë mäi nhiÖt ®é lu«n ph¸t ra c¸c l−îng tö n¨ng l−îng vµ truyÒn ®i trong kh«ng gian d−íi d¹ng sãng ®iÖn tõ, cã b−íc sãng λ tõ 0 ®Õn v« cïng. Theo ®é dµi bøc sãng λ tõ nhá ®Õn lín, sãng ®iÖn tõ ®−îc chia ra c¸c kho¶ng ∆λ øng víi c¸c tia vò trô, tia gama γ , tia Roentgen hay tia X, tia tö ngo¹i, tia ¸nh s¸ng, tia hång ngo¹i vµ c¸c tia sãng v« tuyÕn nh− h×nh (1.1.1.1). Thùc nghiÖm cho thÊy, chØ c¸c tia ¸nh s¸ng vµ hång ngo¹i míi mang n¨ng l−îng Eλ ®ñ lín ®Ó vËt cã thÓ hÊp thô vµ biÕn thµnh néi n¨ng mét c¸ch ®¸ng kÓ, ®−îc gäi lµ tia nhiÖt, cã b−íc sãng λ∈(0,4 ÷ 400) 10-6m. M«i tr−êng thuËn lîi cho T§NBX gi÷a 2 vËt lµ ch©n kh«ng hoÆc khÝ lâang, Ýt hÊp thô bøc x¹. Kh¸c víi dÉn nhiÖt vµ trao ®æi nhiÖt ®èi l−u, T§NBX cã c¸c ®Æc ®iÓm riªng lµ: - Lu«n cã sù chuyÓn hãa n¨ng l−îng: tõ néi n¨ng thµnh n¨ng l−îng ®iÖn tõ khi bøc x¹ vµ ng−îc l¹i khi hÊp thô. Kh«ng cÇn sù tiÕp xóc trùc tiÕp hoÆc gi¸n tiÕp qua m«i tr−êng chÊt trung gian, chØ cÇn m«i tr−êng truyÒn sãng ®iÖn tõ, tèt nhÊt lµ ch©n kh«ng. - Cã thÓ thùc hiÖn trªn kho¶ng c¸ch lín, cì kho¶ng c¸ch gi÷a c¸c thiªn thÓ trong kho¶ng kh«ng vò trô. 116
- - C−êng ®é T§NBX phô thuéc rÊt m¹nh vµo nhiÖt ®é tuyÖt ®èi cña vËt ph¸t bøc x¹. 11.1.2. C¸c ®¹i l−îng ®Æc tr−ng cho bøc x¹ 11.1.2.1. C«ng suÊt bøc x¹ toµn phÇn Q C«ng suÊt bøc x¹ toµn phÇn cña mÆt F lµ tæng n¨ng l−îng bøc x¹ ph¸t ra tõ F trong 1 gi©y, tÝnh theo mäi ph−¬ng trªn mÆt F víi mäi b−íc sãng λ ∈ (0,∞). Q ®Æc tr−ng cho c«ng suÊt bøc x¹ cña mÆt F hay cña vËt, phô thuéc vµo diÖn tÝch F vµ nhiÖt ®é T trªn F: Q = Q (F,T), [W]. 11.1.2.2. C−êng ®é bøc x¹ toµn phÇn E C−êng ®é bøc x¹ toµn phÇn E cña ®iÓm M trªn mÆt F lµ c«ng suÊt bøc x¹ toµn phÇn δQ cña diÖn tÝch dF bao quanh M, øng víi 1 ®¬n vÞ diÖn tÝch dF: δQ E= [W / m 2 ] dF' E ®Æc tr−ng cho c−êng ®é BX toµn phÇn cña ®iÓm M trªn F, phô thuéc vµo nhiÖt ®é T t¹i M, E = E (T). NÕu biÕt ph©n bè E t¹i ∀ M ∈ F th× t×m ®−îc: Q = ∫ EdF , F khi E = const, ∀M ∈ F th×: Q = EF; [W]. 11.1.2.3. C−êng ®é bøc x¹ ®¬n s¾c C−êng ®é bøc x¹ ®¬n s¾c Eλ t¹i b−íc sãng λ, cña ®iÓm M ∈ F lµ phÇn n¨ng l−îng δ2Q ph¸t tõ dF quanh M, truyÒn theo mäi ph−¬ng xuyªn qua kÝnh läc sãng cã λ ∈ ⎣λ ÷ +dλ ⎦ øng víi 1 ®¬n vÞ cña dF vµ dλ: [ ] δ2Q Eλ = , W / m3 . dFdλ Eλ ®Æc tr−ng cho c−êng ®é tia BX cã b−íc sãng λ ph¸t tõ ®iÓm M ∈ F, phô thuéc vµo b−íc sãng λ vµ nhiÖt ®é T t¹i ®iÓm M , Eλ = Eλ (λ, T). ∞ ∫ NÕu biÕt ph©n bè Eλ theo λ th× tÝnh ®−îc E = E λ dλ. Quan hÖ gi÷a Eλ, E, λ =0 Q cã d¹ng: ∞ Q = ∫ EdF = ∫ ∫E dλdF λ F F λ =0 117
- 11.1.3. c¸c hÖ sè A, D,D,R vµ ε 11.1.3.1. C¸c hÖ sè hÊp thô A, ph¶n x¹ R vµ xuyªn qua D Khi tia sãng ®iÖn tõ mang n¨ng l−îng Q chiÕu vµo mÆt vËt, vËt sÏ hÊp thô 1 phÇn n¨ng l−îng QA ®Ó biÕn thµnh néi n¨ng, phÇn QR bÞ ph¶n x¹ theo tia ph¶n x¹, vµ phÇn cßn l¹i QD sÏ truyÒn xuyªn qua vËt ra m«i tr−êng kh¸c theo tia khóc x¹. Ph−¬ng tr×nh c©n b»ng n¨ng l−îng sÏ cã d¹ng: Q = Q A + QR + QD Hay QA QR QD 1= + + =A+R+D Q Q Q Q A = A gäi lµ hÖ sè hÊp thô, Q Q R = R gäi lµ hÖ sè ph¶n x¹. Q Q D = D gäi lµ hÖ sè xuyªn qua. Q Ng−êi ta th−êng gäi vËt cã A = 1 lµ vËt ®en tuyÖt ®èi. R = 1 lµ vËt tr¾ng tuyÖt ®èi, D = 1 lµ vËt trong tuyÖt ®èi, vËt cã D = 0 lµ vËt ®ôc. Ch©n kh«ng vµ c¸c chÊt khÝ lo·ng cã sè nguyªn tö d−íi 3 cã thÓ coi lµ vËt cã D = 1. 11.1.3.2. VËt x¸m vµ hÖ sè bøc x¹ hay ®é ®en ε Nh÷ng vËt cã phæ bøc x¹ Eλ ®ång d¹ng víi phæ bøc x¹ E0λ cña vËt ®en Eλ tuyÖt ®èi ë mäi b−íc sãng λ, tøc cã = ω = const , ∀λ ®−îc gäi lµ vËt x¸m, cßn E 0λ hÖ sè tØ lÖ ε ®−îc gäi lµ hÖ sè bøc x¹ hay ®é ®en cña vËt x¸m. Thùc nghiÖm cho thÊy, hÇu hÕt c¸c vËt liÖu trong kÜ thuËt ®Òu cã thÓ coi lµ vËt x¸m. §é ®en phô thuéc vµo b¶n chÊt vËt liÖu, mµu s¾c vµ tÝnh chÊt c¬ häc cña bÒ mÆt c¸c vËt. 11.1.3.2. Bøc x¹ hiÖu dông vµ bøc x¹ hiÖu qu¶ XÐt t−¬ng t¸c bøc x¹ gi÷a mÆt F cña vËt ®ôc cã c¸c th«ng sè D = 0, A , E vµ m«i tr−êng cã c−êng ®é bøc x¹ tíi mÆt F lµ Et. - L−îng nhiÖn bøc x¹ ra khái 1 m2 mÆt F, bao gåm bøc x¹ tù ph¸t E vµ bøc x¹ ph¶n x¹ (1 - A) Et, ®−îc gäi lµ c−êng ®é bøc x¹ hiÖu dông: E hd = E + (1 − A)E t ' ⎣W / m 2 ⎦ - TrÞ tuyÖt ®èi cña hiÖu sè dßng nhiÖt ra theo bøc x¹ tù ph¸t E vµ dßng nhiÖt vµo 1m2 mÆt F do hÊp thô A Et ®−îc gäi lµ dßng bøc x¹ hiÖu qu¶ q, q = E − AE t , ⎣W / m 2 ⎦. 118
- Dßng bøc x¹ hiÖu qu¶ q chÝnh lµ l−îng nhiÖt trao ®æi b»ng bøc x¹ gi÷a1m2 mÆt F víi m«i tr−êng. NÕu vËt cã nhiÖt ®é cao h¬n m«i tr−êng, tøc vËt ph¸t nhiÖt th× q = E – AEt, nÕu vËt thu nhiÖt th× q = AEt – E. - Quan hÖ gi÷a Ehd vµ q cã d¹ng: ⎛1 ⎞ E E hd = ± q⎜ − 1⎟ A ⎝A ⎠ dÊu (+) khi vËt thu q, dÊu (-) khi vËt ph¸t q. NÕu xÐt tren toµn mÆt F, b»ng c¸ch nh©n c¸c ®¼ng thøc trªn víi F, sÏ ®−îc: C«ng suÊt bøc x¹ hiÖu dông cña F lµ: Qhd = Q +(1 – A)Qt’ ⎣W ⎦ . L−îng nhiÖt trao ®æi gi÷a F vµ m«i tr−êng lµ: QF = [Q - AQt], [W]. Quan hÖ gi÷a Qhd, QF lµ: ⎛1 ⎞ Q ± Q F ⎜ − 1⎟, [W ]. Q hd = A ⎝A ⎠ 11.2. C¸c ®Þnh luËt c¬ b¶n cña bøc x¹ 11.2.1. §Þnh luËt Planck Dùa vµo thuyÕt l−îng tö n¨ng l−îng, Panck ®· thiÕt lËp ®−îc ®Þnh luËt sau ®©y, ®−îc coi lµ ®Þnh luËt c¬ b¶n vÒ bøc x¹ nhiÖt: C−êng ®é bøc x¹ ®¬n s¾c cña vËt ®en tuyÖt ®èi E0λ phô thuéc vµo b−íc sãng λ vµ nhiÖt ®é theo quan hÖ: C1 E 0λ = ⎛ ⎞ C λ5 ⎜ exp 2 − 1⎟ λT ⎠ ⎝ Trong ®ã C1, C2lµ c¸c h»ng sè phô thuéc ®¬n vÞ ®ã, nÕu ®o, nÕu ®o E0λ b»ng W/m3, λ b»ng m, T b»ng 0K th×: C1 = 0,374.10-15, [Wm2] C2 = 1,439.10-12, [mK] §å thÞ E0λ (λ,T) cho thÊy: E0λ t¨ng rÊt nhanh theo T vµ chØ cã gi¸ trÞ ®¸ng kÓ trong miÒn λ ∈ (08÷ 10).10-6 m. E0λ ®¹t cùc trÞ t¹i b−íc sãng λm x¸c ®Þnh theo ph−¬ng tr×nh: c2 ∂E 0λ c2 =e + − 1 = 0, λm .T ∂λ 5λ m T λm 119
- −3 tøc lµ t¹i λm 2,9.10 , [m]. T §ã lµ néi dung ®Þnh luËt Wien, ®−îc thiÕt lËp tr−íc Plack b»ng thùc nghiÖm. §Þnh luËt Plack ¸p dông cho c¸c vËt x¸m, lµ vËt cã Eλ = εE0λ, sÏ cã d¹ng: [ ] εC 1 Eλ = , W / m3 . ⎛ ⎞ C2 λ5 ⎜ exp − 1⎟ λT ⎠ ⎝ 11.2.2. §Þnh luËt Stefan Boltzmann a. ph¸t biÓu ®Þnh luËt: C−êng ®é bøc x¹ toµn phÇn E0 cña vËt ®en tuyÖt ®èi tØ lÖ víi nhiÖt ®é tuyÖt ®èi mò 4: E 0 = σ0T 4 Víi σ0 = 5,67.10-8 W/m2K4 §Þnh luËt nµy ®−îc x©y dùng trªn c¬ së thùc nghiÖm vµ lÝ thuyÕt nhiÖt ®éng häc bøc x¹, mang tªn hai nhµ khoa häc thiÕt lËp ra nã tr−íc Planck. Sau ®ã, nã ®−îc coi nh− 1 hÖ qu¶ cña ®Þnh luËt Planck. b. chøng minh: B»ng ®Þnh luËt Planck: C1λ−5 ∞ ∞ E 0 ∫ E 0 λ dλ = ∫ dλ λ =0 c λ =0 2 λt C C C §æi biÕn x = 2 th× λ = 2 vµ dλ = 22 dx λT Tx Tx ∞ ⎛C ⎞ 3 C x E0 = 1 T4 ∫ x dx =⎜ 1 I ⎟T 4 = σ 0 T 4 ⎜ C4 ⎟ 0 e −1 4 C2 ⎝2⎠ C1 c. TÝnh h»ng sè σ 0 = I C2 3 −x () ∞ ∞ x3 ∞xe ∞ ∞ ∞ dx = ∫ x 3 e − x ∑ e − x dx = ∑ ∫ x 3 e −( n +1) x dx n I∫ dx = ∫ Víi −x e −1 0 1− e x x =0 0 0 n =0 n =0 nÕu ®æi biÕn t = (n +1)x th× 3 4 ∞ ∞ ∞ ⎛ t ⎞ − t dt ⎛1⎞ 1 ∞ ∞ I = ∑∫ ⎜ = ∫ t 3 e − t dt ∑ ⎜ ⎟ = 3!∑ 4 = 6,5 ⎟e t =0 n + 1 n + 1 t =0 n =0 ⎝ n + 1 ⎠ ⎝ ⎠ n =1 n n =0 Do ®ã h»ng sè bøc x¹ cña vËt ®en tuyÖt ®èi, theo Planck lµ: 0,37 4.10 −15 C1 6,5 = 5,67.10 −8 W / m 2 K 4 σ0 = I= −8 4 4 C2 1,4388 .10 Gi¸ trÞ nµy cña σ0 hoµn toµn phï hîp víi ®Þnh luËt trªn. 120
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình hình thành quy trình điều khiển các thiết bị lọc bụi trong kỹ thuật điều hòa không khí p1
5 p | 98 | 10
-
Giáo trình hình thành quy trình điều khiển kỹ thuật kiểm toán trong hạch toán kinh tế p1
13 p | 82 | 8
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p3
12 p | 58 | 6
-
Giáo trình hình thành quy trình ứng dụng hình học phẳng trong dạng đa phân giác p1
10 p | 67 | 6
-
Giáo trình hình thành quy trình điều khiển các thiết bị lọc bụi trong kỹ thuật điều hòa không khí p2
5 p | 90 | 6
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p4
5 p | 75 | 5
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p5
12 p | 71 | 5
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p2
5 p | 81 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p2
12 p | 81 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p1
12 p | 67 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p10
5 p | 65 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p4
11 p | 77 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p7
5 p | 74 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p6
5 p | 65 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p9
5 p | 58 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p5
5 p | 72 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p3
5 p | 80 | 3
-
Giáo trình hình thành quy trình điều khiển thiết bị không có tính dính kết trong quy trình tạo alit p1
10 p | 71 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn