Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p6
lượt xem 4
download
Tham khảo tài liệu 'giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p6', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p6
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k t ≥ 0 gäi l h m nh¶y ®¬n vÞ η(t) = 1 0 t
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k 1. Do h m g kh¶ tÝch tuyÖt ®èi nªn bÞ chÆn trªn 3 ∀ (t, τ) ∈ 32, | f(τ)g(t - τ) | ≤ || g ||∞ | f(τ) | Do f kh¶ tÝch tuyÖt ®èi nªn tÝch ph©n suy réng (f∗g)(t) héi tô tuyÖt ®èi v bÞ chÆn ®Òu +∞ +∞ +∞ +∞ || f ∗ g ||1 = ∫ ∫ f (τ)g(t − τ)dτ dt ≤ ∫ | f (τ) | ∫ | g(t − τ) | dt dτ = || f ||1 || g ||1 −∞ −∞ −∞ −∞ +∞ +∞ ∫ f (τ)g(t − τ)dτ = ∫ f (t − θ)g(θ)dθ = (g∗f)(t) ∀ t ∈ 3, (f∗g)(t) = 2. −∞ −∞ +∞ h 1 ∫ f (t − τ) lim δ(τ, h)dτ = lim h∫ ∀ t ∈ 3, (f∗δ)(t) = f (t − τ)dτ = f(t) 3. h →0 h →0 −∞ 0 4. Suy ra tõ tÝnh tuyÕn tÝnh cña tÝch ph©n §2. C¸c bæ ®Ò Fourier Bæ ®Ò 1 Cho h m f ∈ L1. Víi mçi f ∈ 3 cè ®Þnh kÝ hiÖu fx(t) = f(t - x) víi mäi t ∈ 3 Khi ®ã ¸nh x¹ Φ : 3 → L1, f → fx l liªn tôc theo chuÈn. Chøng minh Ta chøng minh r»ng ∀ ε > 0, ∃ δ > 0 : ∀ x, y ∈ 3, | x - y | < δ ⇒ || Φ(x) - Φ(y) ||1 < ε ThËt vËy Do h m f kh¶ tÝch tuyÖt ®èi nªn 1 ∀ ε > 0, ∃ N > 0 : ∫ | f (t ) | dt < ε 4 | t |≥ N Trong kho¶ng [-N, N] h m f cã h÷u h¹n ®iÓm gi¸n ®o¹n lo¹i mét a1 = - N < a2 < ... < am = N víi ∆ = Max{| ak - ak-1 | : k = 1...m} v trªn mçi kho¶ng con [ak-1, ak] h m cã thÓ th¸c triÓn th nh h m liªn tôc ®Òu ε ∀ ε > 0, ∃ δ > 0 : | x - y | < δ ⇒ | f(x) - f(y) | < 2 m∆ Tõ ®ã suy ra −íc l−îng +∞ ∫ f (t − x) − f (t − y) dt || Φ(x) - Φ(y) ||1 = −∞ ak m ∑ ∫ f (t − x) − f (t − y) dt ∫ f (t − x) − f (t − y) dt + ≤
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k +∞ 1 ∫∞H(λt )e dt ixt H(t) = e-|t| v hλ(x) = (5.2.1) 2π − Bæ ®Ò 2 C¸c h m H(t) v hλ(x) cã c¸c tÝnh chÊt sau ®©y ∀ t ∈ 3, 0 < H(t) ≤ 1 lim H(λt) = 1 lim H(λt) = 0 1. λ →0 λ → +∞ +∞ 1λ ∫h ∀ (λ, x) ∈ 3 × 3* 2. hλ(x) = (x)dx = 1 + λ π λ2 + x 2 −∞ +∞ +∞ 1 ∫∞ −∫∞f (s)e ds H(λt )e dt ∀ f ∈ L1 (f ∗ hλ)(x) = ist ixt 3. 2π − ∀ g ∈ L∞ liªn tôc t¹i x ∈ 3 lim (g ∗ hλ)(f) = g(x) 4. λ →0 ∀f∈L lim || f ∗ hλ - f ||1 = 0 1 5. λ →0 Chøng minh 1. Suy ra tõ ®Þnh nghÜa h m H(t) 2. TÝnh trùc tiÕp tÝch ph©n (5.2.1) +∞ 1 ( λ + ix ) t 11λ 0 1 1 ∫e dt + ∫ e ( − λ + ix ) t dt = 2 π λ + ix − − λ + ix = π λ2 + x 2 hλ(x) = 2π −∞ 0 3. Theo ®Þnh nghÜa tÝch chËp v h m hλ +∞ +∞ +∞ 1 ∫ f (x − y)e i ( x − y ) t dy H(λt )e ixt dt (f ∗ hλ)(x) = ∫ f (x − y)h λ (y)dy = 2 π −∫ −∞ ∞ −∞ §æi biÕn s = x - y ë tÝch ph©n bªn trong nhËn ®−îc kÕt qu¶. 4. Theo ®Þnh nghÜa tÝch chËp v h m hλ +∞ +∞ ∫ g(x − y)h λ (y)dy = ∫ g(x − λs)h (s)ds víi y = λs (g ∗ hλ)(x) = 1 −∞ −∞ ¦íc l−îng trùc tiÕp ∀ (x, s) ∈ 32, | g(x - λs)h1(s) | ≤ || g ||∞ | h1(s) | Suy ra tÝch ph©n trªn bÞ chÆn ®Òu. Do h m g liªn tôc nªn cã thÓ chuyÓn giíi h¹n qua dÊu tÝch ph©n. +∞ ∫ g( x ) h (g ∗ hλ)(x) λ → 0 (s)ds = g(x) → 1 −∞ 5. KÝ hiÖu +∞ ∫ | f (x − y) − f (x) | dx ≤ 2|| f || ∀ y ∈ 3, g(y) = || fy - f ||1 = 1 −∞ Theo bæ ®Ò 1. h m g liªn tôc t¹i y = 0 víi g(0) = 0 v bÞ chÆn trªn to n 3 Tõ ®Þnh nghÜa chuÈn, tÝch chËp v h m hλ . Trang 82 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k +∞ +∞ +∞ ∫ | (f ∗h ∫ ∫ (f (x − y) − f (x))h || f∗hλ - f ||1 = )(x) − f (x) | dx = (y)dy dx λ λ −∞ −∞ −∞ +∞ +∞ ∫ ∫ | f (x − y) − f (x) | dx h ≤ (y)dy = (g∗hλ)(0) λ→ g(0) = 0 0 λ → −∞ − ∞ Suy ra tõ tÝnh chÊt 4. cña bæ ®Ò 2. §3. BiÕn ®æi Fourier • Cho c¸c h m f, F ∈ L1 kÝ hiÖu ) +∞ − i ωt ∫ f (t )e ∀ ω ∈ 3, f (ω) = dt (5.3.1) −∞ ( +∞ 1 itω ∫∞F(ω)e dω ∀ t ∈ 3, F (t) = (5.3.2) 2π − Ngo i ra h m f v h m g gäi l b»ng nhau hÇu kh¾p n¬i trªn 3 nÕu ∫ | f (x) − g(x) | dx = 0 R §Þnh lý Víi c¸c kÝ hiÖu nh− trªn ) ) ∀ f ∈ L1 f ∈ C0 ∩ L1 v || f ||∞ ≤ || f ||1 1. ( ( ∀ F ∈ L1 F ∈ C0 ∩ L1 v || F ||∞ ≤ || f ||1 2. ) ( h. k .n NÕu f = F th× F = f 3. Chøng minh 1. Theo gi¶ thiÕt h m f kh¶ tÝch tuyÖt ®èi v ta cã ∀ (ω, t) ∈ 32, | f(t)e-iωt | = | f(t) | ) Suy ra tÝch ph©n (5.3.1) bÞ chÆn ®Òu. Do h m f(t)e-iωt liªn tôc nªn h m f (ω) liªn tôc. BiÕn ®æi tÝch ph©n ) π +∞ +∞ π − i ω( t + ) dt = - ∫ f (t − )e − iωt dt f (ω) = ∫ f (t )e ω ω −∞ −∞ Céng hai vÕ víi c«ng thøc (5.3.1) suy ra ) +∞ π 2| f (ω) | ≤ ∫ | f (t ) − f (t − ) || e −iωt | dt = || f - f π ||1 ω→→ 0 +∞ ω −∞ ω Do ¸nh x¹ Φ liªn tôc theo chuÈn theo bæ ®Ò 1. Ngo i ra, ta cã . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 83
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k ) ) +∞ || f ||∞ = supR| f (ω) | ≤ supR ∫ | f (t ) || e − iωt | dt = || f ||1 −∞ 2. KÝ hiÖu F-(t) = F(- t) víi t ∈ 3. BiÕn ®æi c«ng thøc (5.3.2) 1) ( +∞ 1 F(-σ)e − itσ dσ = 2 π −∫ F- (t ) víi σ = -ω F(t ) = 2π ∞ Do h m F ∈ L1 nªn h m F- ∈ L1 v kÕt qu¶ ®−îc suy ra tõ tÝnh chÊt 1. cña ®Þnh lý. 3. Theo tÝnh chÊt 3. cña bæ ®Ò 2 v tÝnh chÊt cña tÝch ph©n bÞ chÆn ®Òu 1) ( +∞ +∞ 1 f (ω)H(λω)e itω dω = itω ∫∞ ∫∞F(ω)H(λω)e dω λ0→ F(t ) (f ∗ hλ)(t) = → 2π − 2π − MÆt kh¸c theo tÝnh chÊt 5. cña theo bæ ®Ò 2 || f∗hλ - f ||1 λ→ 0 0 → Do tÝnh chÊt cña sù héi tô theo chuÈn h. k . n ∀ t ∈ 3, (f∗hλ)(t) λ→ f(t) 0 → Do tÝnh duy nhÊt cña giíi h¹n suy ra ( h. k .n F =f • CÆp ¸nh x¹ ) ( F : L1 → C0 , f α f v F-1 : L1 → C0 , F α F (5.3.3) x¸c ®Þnh theo cÆp c«ng thøc (5.3.1) v (5.3.2) gäi l cÆp biÕn ®æi Fourier thuËn nghÞch. ) ( Do tÝnh chÊt 3. cña ®Þnh lý sau n y chóng ta lÊy F = f v ®ång nhÊt f ≡ F . H m f gäi l h m gèc, h m F gäi l h m ¶nh v kÝ hiÖu l f ↔ F. VÝ dô ) +∞ 1 1. f(t) = e η(t) ↔ f (ω) = ∫ η(t )e −(a +iω) t dt = -at víi Re a > 0 a + iω −∞ ) +∞ 2λ 0 1 1 -λ|t| ( λ − iω) t dt + ∫ e −( λ + iω) t dt = (λ > 0) ↔ f (ω) = ∫ e f(t) = e + =2 λ − iω λ + iω λ + ω 2 −∞ 0 +∞ +∞ − iωt itω ∫ δ(t)e ∫ δ(ω)e 2. δ(t) ↔ u(ω) = dω = 1 ↔ F(ω) = 2πδ(ω) dt = 1 v u(t) = −∞ −∞ ) sin Tω T 1 | t |≤ T 3. f(t) = − iωt ∫e 0 | t | > T ↔ f (ω) = dt = 2 ω −T ( +∞ sin ωT sin ωT iωt 1 ∫∞2 ω e dω ≡ f(t) ngo¹i trõ c¸c ®iÓm t = ± T F(ω) = 2 ↔ F (t) = ω 2π − 1) ( T 1 | ω|≤ T 1 sin Tt F(ω) = e itω dω = 2 π −∫ ↔ F (t) = ≡ f (t) 0 | ω | > T πt 2π T . Trang 84 Gi¸o Tr×nh To¸n Chuyªn §Ò
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình hình thành quy trình điều khiển các thiết bị lọc bụi trong kỹ thuật điều hòa không khí p1
5 p | 98 | 10
-
Giáo trình hình thành quy trình điều khiển kỹ thuật kiểm toán trong hạch toán kinh tế p1
13 p | 82 | 8
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p3
12 p | 58 | 6
-
Giáo trình hình thành quy trình ứng dụng hình học phẳng trong dạng đa phân giác p1
10 p | 67 | 6
-
Giáo trình hình thành quy trình điều khiển các thiết bị lọc bụi trong kỹ thuật điều hòa không khí p2
5 p | 90 | 6
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p4
5 p | 75 | 5
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p5
12 p | 71 | 5
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p2
5 p | 81 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p7
5 p | 74 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p4
11 p | 77 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p10
5 p | 65 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p1
12 p | 68 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p2
12 p | 81 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p9
5 p | 58 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p5
5 p | 72 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p3
5 p | 80 | 3
-
Giáo trình hình thành quy trình điều khiển thiết bị không có tính dính kết trong quy trình tạo alit p1
10 p | 71 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn