Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p2
lượt xem 4
download
Tham khảo tài liệu 'giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p2', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p2
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k ∃ δ > 0 : ∀ n ≤ N , ∀ z ∈ D, | z - a | ≤ δ ⇒ | un(z) - un(a) | < ε / 3N Suy ra ∀ z ∈ D, | z - a | ≤ δ ⇒ N ∑| u | S(z) - S(a) | ≤ | S(z) - Sn(z) | + (z) − u n (a ) | + | S(a) - Sn(a)| < ε n k =0 VËy h m S(z) liªn tôc trªn miÒn D. 2. TÝch ph©n tõng tõ NÕu ∀ n ∈ ∠, un(z) liªn tôc trªn ®−êng cong Γ tr¬n tõng khóc, +∞ D ∑ u n (z) = S(z) th× h m S(z) còng kh¶ tÝch trªn ®−êng cong Γ. n»m gän trong miÒn D v n =0 +∞ +∞ ∑ u n (z ) dz = ∑ ∫ u n (z)dz ∫ n =0 (4.1.3) Γ n =0 Γ Chøng minh Theo tÝnh chÊt 1. h m S(z) liªn tôc v Γ tr¬n tõng khóc nªn kh¶ tÝch trªn Γ. b KÝ hiÖu s(Γ) = ∫ | γ ′(t ) | dt . Do tÝnh héi tô ®Òu a ∀ ε > 0, ∃ N > 0 : ∀ n > N , ∀ z ∈ Γ ⇒ | S(z) - Sn(z) | < ε / s(Γ) Suy ra n ∫ S(z)dz − ∑ ∫ u n (z)dz ≤ ∫ S(z) − S (z) dz < ε n k =0 Γ Γ Γ +∞ D ∑u 3. §¹o h m tõng tõ NÕu ∀ n ∈ ∠, un(z) gi¶i tÝch trong miÒn D v (z) = S (z) th× n n =0 h m S(z) còng gi¶i tÝch trong miÒn D. +∞ D ∑ u (nk ) (z) = S ( k ) (z) ∀ k ∈ ∠, (4.1.4) n =0 Chøng minh Víi mäi z ∈ D, ∃ B(z, R) ⊂ D. KÝ hiÖu Γ = ∂B+ v G = D - B(z, R/2) khi ®ã u (ζ ) u (ζ ) G S (ζ ) +∞ gi¶i tÝch trong G v ∑ n ∀ n ∈ ∠, n = ζ−z n =0 ζ − z ζ−z Sö dông c«ng thøc (3.4.3) v c«ng thøc (4.1.3) 1 +∞ u n (ζ ) 1 S (ζ ) +∞ ∑ ∫ ζ − z dζ = 2πi ∫ ζ − z dζ S(z) = ∑ u n (z) = 2πi n =0 Γ n =0 Γ Theo ®Þnh lý vÒ tÝch ph©n Cauchy h m S(z) gi¶i tÝch trong miÒn D v do ®ã cã ®¹o h m mäi cÊp trªn miÒn D. KÕt hîp c«ng thøc (3.5.3) v c«ng thøc (4.1.3) u n (ζ ) S (ζ ) +∞ +∞ k! k! dζ = ∑ dζ = ∑ u (nk ) (z) ∫ 2 πi ∫ (ζ − z) k +1 ∀ k ∈ ∠, S(k)(z) = n = 0 2 πi Γ (ζ − z ) k +1 n =0 Γ . Trang 60 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k 4. X¸c ®Þnh trªn biªn NÕu ∀ n ∈ ∠, un(z) liªn tôc trªn miÒn D , gi¶i tÝch trong miÒn D +∞ +∞ ∂D D ∑ u n (z) = S(z) th× ∑u (z ) = S(z) . v n n =0 n =0 Chøng minh Theo nguyªn lý cùc ®¹i n n ∑u ∑u ∀ z ∈ D, ∃ a ∈ ∂D : | S(z) - (z) | ≤ | S(a) - (a ) | < ε k k k =0 k =0 §2. Chuçi luü thõa phøc • Chuçi h m phøc +∞ ∑c (z − a ) n = c0 + c1(z - a) + ... + cn(z - a)n + ... (4.2.1) n n =0 gäi l chuçi luü thõa t©m t¹i ®iÓm a. §Þnh lý Abel NÕu chuçi luü thõa héi tô t¹i ®iÓm z0 ≠ a th× nã héi tô tuyÖt ®èi v ®Òu trong mäi h×nh trßn B(a, ρ) víi ρ < | z0 - a |. Chøng minh +∞ Do chuçi sè phøc ∑ c n (z 0 − a ) n héi tô nªn lim cn(z0 - a)n = 0. Suy ra n → +∞ n =0 ∃ M > 0 sao cho ∀ n ∈ ∠, | cn(z0 - a)n | ≤ M Víi mäi z ∈ B(a, ρ) ®Æt q = | z - a | / | z0 - a | < 1 ta cã n z−a ∀ n ∈ ∠, ∀ z ∈ B(a, ρ), | cn(z - a) | = | cn(z0 - a) | ≤ M qn n n z0 − a +∞ ∑q n Do chuçi sè d−¬ng héi tô, theo tiªu chuÈn Weierstrass suy ra chuçi luü thõa héi tô n =0 tuyÖt ®èi v ®Òu. Hª qu¶ 1 NÕu chuçi luü thõa ph©n kú t¹i z1 th× nã ph©n kú trªn miÒn | z - a | > | z1 - a | Chøng minh Gi¶ sö tr¸i l¹i chuçi luü thõa héi tô t¹i z : | z - a | > | z1 - a |. Tõ ®Þnh lý suy ra chuçi luü thõa héi tô t¹i z1. M©u thuÉn víi gi¶ thiÕt. HÖ qu¶ 2 Tån t¹i sè R ≥ 0 sao cho chuçi luü thõa héi tô trong ®−êng trßn | z - a | = R v . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 61
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k ph©n kú ngo i ®−êng trßn | z - a | = R. Chøng minh Râ r ng chuçi luü thõa lu«n héi tô t¹i z = 0 v ph©n kú t¹i z = ∞. KÝ hiÖu R1 = Max{ρ ∈ 3+ : chuçi luü thõa héi tô trong | z - a | < ρ} R2 = Min{ρ ∈ 3+ : chuçi luü thõa ph©n kú ngo i | z - a | < ρ} Ta cã R1 = R2 = R • Sè R gäi l b¸n kÝnh héi tô cßn h×nh trßn B(a, R) gäi l h×nh trßn héi tô cña chuçi luü thõa. NÕu D l miÒn héi tô cña chuçi luü thõa th× ta lu«n cã B(a, R) ⊂ D ⊂ B (a, R) HÖ qu¶ 3 B¸n kÝnh héi tô ®−îc tÝnh theo mét trong c¸c c«ng thøc sau ®©y cn 1 R = lim = lim (4.2.2) c n +1 n → +∞ n → +∞ | cn | n Chøng minh LËp luËn t−¬ng tù chuçi luü thõa thùc. • KÝ hiÖu +∞ ∑c (z − a ) n víi z ∈ B(a, R) S(z) = (4.2.3) n n =0 KÕt hîp c¸c tÝnh chÊt cña h m luü thõa víi c¸c tÝnh chÊt cña chuçi héi tô ®Òu ta cã c¸c hÖ qu¶ sau ®©y. HÖ qu¶ 4 H m S(z) liªn tôc trong h×nh trßn B(a, R) Chøng minh Suy ra tõ tÝnh liªn tôc cña h m luü thõa v chuçi héi tô ®Òu. HÖ qu¶ 5 H m S(z) kh¶ tÝch trªn ®−êng cong Γ tr¬n tõng khóc, n»m gän trong B(a, R) +∞ ∑ c ∫ (z − a ) ∫ S(z)dz = n dz (4.2.4) n n =0 Γ Γ Chøng minh Suy ra tõ tÝnh kh¶ tÝch cña h m luü thõa v c«ng thøc tÝch ph©n tõng tõ. HÖ qu¶ 6 H m S(z) gi¶i tÝch trong h×nh trßn B(a, R) +∞ ∑ n(n − 1)...(n − k + 1)c (z − a ) n − k ∀ k ∈ ∠, S(k)(z) = (4.2.5) n n=k Chøng minh Suy ra tõ tÝnh gi¶i tÝch cña h m luü thõa v c«ng thøc ®¹o h m tõng tõ. . Trang 62 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k 1 (k) HÖ qu¶ 7 ∀ k ∈ ∠, ck = S (a) (4.2.6) k! Chøng minh Suy ra tõ c«ng thøc (4.2.5) víi z = a. +∞ 1 ∑z n VÝ dô Chuçi luü thõa héi tô ®Òu trong h×nh trßn B(0, 1) ®Õn h m S(z) = . 1− z n =0 Suy ra dζ +∞ z z +∞ 1 ∑ ∫ ζ n dζ = ∑ n + 1 z n +1 = ∫ 1 − ζ = - ln(1 - z) ∀ z ∈ B(0, 1), n =0 0 n =0 0 (k) +∞ 1 k! ∑ n(n − 1)...(n − k + 1)z n−k ∀ k ∈ ∠, = = , ... 1 − z (1 − z) k +1 n=k §3. Chuçi Taylor §Þnh lý Cho D = B(a, R), Γ = ∂D+ v h m f liªn tôc trªn D , gi¶i tÝch trong D. f (ζ ) +∞ 1 ∑c ∫ ( ζ − a ) n +1 d ζ , n ∈ ∠ ∀ z ∈ D, f(z) = (z − a ) n víi cn = (4.3.1) n 2 πi Γ n =0 C«ng thøc (4.3.1) gäi l khai triÓn Taylor cña h m f t¹i ®iÓm a. Chøng minh Víi mäi z ∈ D cè ®Þnh. Theo c«ng thøc tÝch ph©n Cauchy f (ζ ) 1 ∫ ζ − z dζ f(z) = (1) 2 πi Γ Víi ζ ∈ Γ ta cã q = | z - a | / | ζ - a | < 1 suy ra khai triÓn n n 1 z−a f (ζ ) f (ζ ) z − a +∞ +∞ 1 1 1 ∑ζ −a ζ −a v ζ −z = ∑ ζ − a ζ − a (2) = = z−a ζ−a ζ−z 1− n =0 n =0 ζ−a Do h m f liªn tôc nªn cã module bÞ chÆn trªn miÒn D suy ra n f (ζ ) z − a Mn ∃ M > 0 : ∀ ζ ∈ Γ, ≤ q ζ −a ζ −a R Theo tiªu chuÈn Weierstrass chuçi (2) héi tô ®Òu trªn Γ, do ®ã cã thÓ tÝch ph©n tõng tõ däc theo ®−êng cong Γ. TÝch ph©n tõng tõ c«ng thøc (1) suy ra c«ng thøc (4.3.1) . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 63
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k HÖ qu¶ KÕt hîp c«ng thøc (4.2.6) v (4.3.1) ta cã 1 (k) ∀ k ∈ ∠, ck = f (a) (4.3.2) k! NhËn xÐt Theo ®Þnh lý Cauchy cã thÓ lÊy Γ l ®−êng cong bÊt k× ®¬n, kÝn, tr¬n tõng khóc bao a v z, ®Þnh h−íng d−¬ng v n»m gän trong B(a, R). Th«ng th−êng, chóng ta khai triÓn h m f(z) trong h×nh trßn B(0, R) chuçi nhËn ®−îc gäi l chuçi Maclorinh t−¬ng tù nh− h m thùc. VÝ dô +∞ zn zn +∞ zn 1 ∑ (−1) n ∑ n! v e-z = 1. ez = 1 + z+…+ +… = n! 1! n! n =0 n =0 (−1) n 2 n +∞ ( −i ) n n 1 i 1 1 1 ∑ (2n)! z 2. cos z = (eiz + e-iz) = ∑ ( + )z n = 1 - z2 + z4 + ... = 2 n! n! 2 2! 4! n =0 T−¬ng tù khai triÓn 1 iz -iz 1 1 (e - e ), ch z = (ez + e-z), sh z = (ez - e-z) sin z = 2i 2 2 m(m − 1)...( m − n + 1) n m ( m − 1) 2 +∞ z +… = ∑ 3. (1 + z)m = 1 + mz + z n! 2! n =0 Víi m = 1 1 +∞ ∑ (−1) = 1 - z + z2 - … = nn z 1+ z n =0 Thay z b»ng z2 +∞ 1 = 1 - z2 + z4 - … = ∑ ( −1) n z 2 n 1 + z2 n =0 Suy ra dζ z (−1) n n +1 +∞ z +∞ ∑ n + 1z ∑ (−1) n ∫ ζ n dζ = ∫1+ ζ = ln(1 + z) = n =0 n =0 0 0 (−1) n 2 n +1 z +∞ +∞ dζ z = ∑ (−1) n ∫ ζ 2 n dζ = ∑ 2n + 1z ∫ 1 + ζ 2 n =0 arctanz = n =0 0 0 §4. Kh«ng ®iÓm cña h m gi¶i tÝch §Þnh lý Cho h m f gi¶i tÝch trong miÒn D v d y sè (zn)n∈∠ héi tô trªn miÒn D ®Õn ®iÓm a ∈ D. NÕu ∀ n ∈ ∠, f(zn) = 0 th× ∃ R > 0 sao cho ∀ z ∈ B(a, R), f(z) = 0. . Trang 64 Gi¸o Tr×nh To¸n Chuyªn §Ò
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình hình thành quy trình điều khiển các thiết bị lọc bụi trong kỹ thuật điều hòa không khí p1
5 p | 98 | 10
-
Giáo trình hình thành quy trình điều khiển kỹ thuật kiểm toán trong hạch toán kinh tế p1
13 p | 82 | 8
-
Giáo trình hình thành quy trình điều khiển các thiết bị lọc bụi trong kỹ thuật điều hòa không khí p2
5 p | 90 | 6
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p3
12 p | 57 | 5
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p4
5 p | 75 | 5
-
Giáo trình hình thành quy trình ứng dụng hình học phẳng trong dạng đa phân giác p1
10 p | 66 | 5
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p5
12 p | 70 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p7
5 p | 73 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p10
5 p | 65 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p1
12 p | 67 | 4
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p6
5 p | 65 | 4
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p4
11 p | 76 | 3
-
Giáo trình hình thành quy trình phân tích bộ giải mã lệnh các lệnh số học logic của bộ vi xử lý p2
12 p | 80 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p9
5 p | 58 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p5
5 p | 72 | 3
-
Giáo trình hình thành quy trình điều khiển nguyên lý của hàm điều hòa dạng vi phân p3
5 p | 79 | 3
-
Giáo trình hình thành quy trình điều khiển thiết bị không có tính dính kết trong quy trình tạo alit p1
10 p | 71 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn