intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5

Chia sẻ: Fgsdga Erytrh | Ngày: | Loại File: PDF | Số trang:5

74
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5', khoa học tự nhiên, vật lý phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k ∫ g(z)dz ∃ M > 0 : ∀ z ∈ Γρ , | g(z) | < M ≤ Mπρ ρ→0 → 0  ⇒ (2) Γρ Tham sè ho¸ cung Γρ : z = b + ρeit víi t ∈ [π, 0]. TÝnh trùc tiÕp c −1 ∫ z − b dz = - πiResf(b) (3) Γρ Thay (2) v (3) v o (1) suy ra c«ng thøc (4.9.1) +∞ x −1 ∫ (x VÝ dô TÝnh tÝch ph©n I = dx + 1) 2 2 −∞ z −1 Ph©n thøc f(z) = cã cùc ®iÓm kÐp a = i thuéc nöa mÆt ph¼ng trªn (z + 1) 22 ′  z −1   1 2(z − 1)  1  ( z + i ) 2 − (z + i ) 3  = 4 i Resf(i) = lim = z →i  ( z + i ) 2      z =i π I = 2πiResf(i) = - Suy ra 2 HÖ qu¶ 2 Cho f(z) l ph©n thøc h÷u sao cho bËc cña mÉu sè lín h¬n bËc tö sè Ýt nhÊt l mét ®¬n vÞ, cã c¸c cùc ®iÓm ak víi k = 1...p n»m trong nöa mÆt ph¼ng trªn v cã c¸c cùc ®iÓm ®¬n bj víi j = 1...q n»m trªn trôc thùc. KÝ hiÖu g(z) = f(z)eiαz ta cã +∞ p q dx = 2πi ∑ Re sg(a k ) + πi ∑ Re sg(b j ) iαx ∫ f (x)e (4.9.4) k =1 j=1 −∞ Chøng minh LËp luËn t−¬ng tù nh− chøng minh hÖ qu¶ 1. +∞ +∞ e ix sin x 1 VÝ dô TÝnh tÝch ph©n I = ∫ dx = Im ∫ dx x 2 −∞ x 0 1 cã cùc ®iÓm ®¬n b = 0 thuéc trôc thùc v Resg(0) = lim eiz = 1 Ph©n thøc f(z) = z z →0 π 1 I = Im(πi) = Suy ra 2 2 HÖ qu¶ 3 Cho ®−êng cong ΓR = { | z | = R, Rez ≤ α } v h m f gi¶i tÝch trong nöa mÆt ph¼ng D = { Rez < α } ngo¹i trõ h÷u h¹n ®iÓm bÊt th−êng v lim f(z) = 0. z →∞ λz ∫ f (z)e ∀ λ > 0, lim dz = 0 (4.9.5) R → +∞ ΓR . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 75
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k Chøng minh Suy ra tõ ®Þnh lý b»ng c¸ch quay mÆt ph¼ng mét gãc π/2. HÖ qu¶ 4 Víi c¸c gi¶ thiÕt nh− hÖ qu¶ 3, kÝ hiÖu g(z) = eλzf(z) α + i∞ 1 ∑ Re sg(a λz ∫i∞e f (z)dz = ∀ λ > 0, I(λ) = ) (4.9.6) 2πi α − k Re a k < α Chøng minh KÝ hiÖu Γ = ΓR ∪ [α - iβ, α + iβ] víi R ®ñ lín ®Ó bao hÕt c¸c cùc ®iÓm cña h m f(z) Theo c«ng thøc (4.7.6) α + iβ 1 1 1 ∑ Re sg(a λz ∫ e f (z)dz = 2πi λz ∫e λz ∫ f (z)e dz + 2πi ) f (z )dz = k 2 πi Γ Re a k < α ΓR α − iβ Suy ra α + iβ 1 ∑ Re sg(a λz ∫ f (z)e iλz ∫iβe f (z)dz = )- dz k 2 πi α − Re a k < α ΓR Cho β → +∞ v sö dông hÖ qu¶ 3 chóng ta nhËn ®−îc c«ng thøc (4.9.6) B i tËp ch−¬ng 4 1. T×m miÒn héi tô v tæng cña c¸c chuçi sau ®©y. +∞ −2 +∞ ni n 2 n 1 ∑ ( z + i ) n +1 ∑ (n + 1)i ∑ (z − 2) n n +2 (z − i ) n a. c. b. n =1 n = −∞ n =0 2. T×m miÒn héi tô cña chuçi Marlaurin cña c¸c h m sau ®©y. 3z + 1 z 2 − 2 z + 19 z a. b. c. (z − 3) 2 (2 z + 5) 4 + z2 ( z − 2) 3 d. (1 - z)e-2z e. sin3z f. ln(1 + z2) 3. T×m miÒn héi tô cña chuçi Taylor t¹i ®iÓm a cña c¸c h m sau ®©y. 1 1 1 a. ,a=1 b. 2 ,a=3 c. , a = 3i z−2 1− z z − 6z + 5 1 2 f. e z − 4 z +1 , a = 2 d. sin(z2 + 4z), a = -2 e. 2 , a = 2 z .Trang 76 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k 4. X¸c ®Þnh cÊp kh«ng ®iÓm cña c¸c h m sè sau ®©y. sin 3 z a. (z2 + 9)(z2 + 4)5 b. (1 - ez)(z2 - 4)3 c. z 5. T×m h m f gi¶i tÝch t¹i z = 0 v tho¶ m n n2 + 1 πn 1 1 1 1 , n ∈ ∠* b. f(± , n ∈ ∠* c. f( ) = sin , n ∈ ∠* a. f( )= )= 3n + 1 4 n n n 2 n 6. T×m miÒn héi tô cña chuçi Laurent t¹i ®iÓm a cña c¸c h m sau ®©y. 1 1 ,a=0v a=∞ , a = 0, a = 1 v a = ∞ a. b. z−2 z(1 − z) 1 z 2 − 4z c. z2 e z , a = 0 v a = ∞ d. cos ,a=2 ( z − 2) 2 7. T×m chuçi Laurent trong cña h m f trong c¸c miÒn D sau ®©y. z 2 − 2z + 5 1+ z , 1
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k e z dz zdz ∫ z2 + 4 , Γ : | z | = 3 ∫ (z − 1)(z − 2) , Γ : | z - 2 | = 2 a. b. Γ Γ dz dz ∫z ∫ (z − 1) , Γ : x2 + y2 = 2x + 2y - 1 , Γ : x 2 + y2 = 2x c. d. +1 (z + 1) 4 2 2 Γ Γ dz dz ∫ (z − 3)(z ∫z ,Γ:|z|=2 , Γ: |z|=2 e. f. + 1) +1 5 10 Γ Γ n  1 dz ∫  sin z  ∫z dz , Γ : | z | = 1 , Γ : 4x 2 + 2y2 = 3 g. h. +1 3   Γ Γ 11. TÝnh c¸c tÝch ph©n x¸c ®Þnh sau ®©y π 2π π dϕ dϕ dϕ ∫ 13 + 12 sin ϕ a. ∫ b. ∫ c. 1 + cos ϕ 0 (1 + cos ϕ) 2 −π 0 12. T×m sè nghiÖm cña c¸c ®a thøc trong miÒn D sau ®©y. z5 + 2z2 + 8z + 1, | z | < 1 v 1 ≤ | z | 0 c. 2z4 - 3z3 + 3z2 - z + 1, Rez > 0 v Imz > 0 d. 13. TÝnh c¸c tÝch ph©n suy réng sau ®©y. +∞ +∞ +∞ x2 + 1 dx dx a. ∫ 2 b. ∫ 4 ∫ (x dx c. − ∞ ( x + 9) −∞ x + 1 + 1)(x 2 + 4) 2 2 0 +∞ +∞ +∞ dx x cos dx x sin x ∫ (x ∫ (x ∫x d. e. f. dx + 1) n + 4) 2 − 2x + 10 2 2 2 −∞ −∞ 0 +∞ 2 +∞ +∞ 2 x 2 ln x  sin x  ln x g. ∫  h. ∫ i. ∫  dx dx dx 0 1+ x 0 (1 + x ) 2 22 x − ∞ x(1 − x ) 1 1 dx ∫ ∫ j. k. dx x +1 (1 − x)(1 + x) 2 3 −1 0 . Trang 78 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Ch−¬ng 5 BiÕn ®æi fourier v BiÕn ®æi laplace §1. TÝch ph©n suy réng • Trong ch−¬ng n y chóng ta kÝ hiÖu F(3, ∀) = { f : 3 → ∀} l ®¹i sè c¸c h m biÕn thùc, trÞ phøc +∞ ∫ | f (t) | dt l || f ||∞ = SupR| f(t) | v || f ||1 = c¸c chuÈn trªn F(3, ∀) −∞ L∞ = { f ∈ F(3, ∀) : || f ||∞ ≤ +∞ } l ®¹i sè c¸c h m cã module bÞ chÆn C0 = { f ∈ C(3, ∀) : lim f(t) = 0 } l ®¹i sè c¸c h m liªn tôc, dÇn vÒ kh«ng t¹i ∞ t →∞ L = { f ∈ F(3, ∀) : || f ||1 ≤ +∞ } l ®¹i sè c¸c h m kh¶ tÝch tuyÖt ®èi trªn 3 1 Chóng ta ® biÕt r»ng h m kh¶ tÝch tuyÖt ®èi l liªn tôc tõng khóc, dÇn vÒ kh«ng t¹i v« cïng v bÞ chÆn trªn to n 3. Tøc l L1 ⊂ CM0 ⊂ L∞ • Cho kho¶ng I ⊂ 3 v h m F : I × 3 → ∀, (x, t) α F(x, t) kh¶ tÝch trªn 3 víi mçi x ∈ I cè ®Þnh. TÝch ph©n suy réng +∞ ∫ F(x, t )dt víi x ∈ I f(f) = (5.1.1) −∞ gäi l bÞ chÆn ®Òu trªn kho¶ng I nÕu cã h m ϕ ∈ L1 sao cho ∀ (x, t) ∈ I × 3,  F(x, t)  ≤ | ϕ(t) | §Þnh lý TÝch ph©n suy réng bÞ chÆn ®Òu cã c¸c tÝnh chÊt sau ®©y 1. NÕu h m F(x, t) liªn tôc trªn miÒn I × 3 th× h m f(x) liªn tôc trªn kho¶ng I +∞ ∂F ∂F ∫ ∂x (x, t )dt liªn tôc trªn miÒn I × 3 v tÝch ph©n 2. NÕu c¸c h m F(x, t), còng bÞ ∂x −∞ chÆn ®Òu trªn kho¶ng I th× h m f(x) cã ®¹o h m trªn kho¶ng I +∞ +∞ ∂F d dx −∫ ∫ ∂x (x, t )dt ∀ x ∈ I, F(x, t )dt = ∞ −∞ 3. NÕu h m F(x, t) liªn tôc trªn I × 3 th× h m f(x) kh¶ tÝch ®Þa ph−¬ng trªn kho¶ng I +∞ b   b ∫  ∫ F(x, t )dx dt ∫ f (x)dx = ∀ [a, b] ⊂ I,     −∞ a a • KÝ hiÖu . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 79
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2