Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5
lượt xem 3
download
Tham khảo tài liệu 'giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5', khoa học tự nhiên, vật lý phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k ∫ g(z)dz ∃ M > 0 : ∀ z ∈ Γρ , | g(z) | < M ≤ Mπρ ρ→0 → 0 ⇒ (2) Γρ Tham sè ho¸ cung Γρ : z = b + ρeit víi t ∈ [π, 0]. TÝnh trùc tiÕp c −1 ∫ z − b dz = - πiResf(b) (3) Γρ Thay (2) v (3) v o (1) suy ra c«ng thøc (4.9.1) +∞ x −1 ∫ (x VÝ dô TÝnh tÝch ph©n I = dx + 1) 2 2 −∞ z −1 Ph©n thøc f(z) = cã cùc ®iÓm kÐp a = i thuéc nöa mÆt ph¼ng trªn (z + 1) 22 ′ z −1 1 2(z − 1) 1 ( z + i ) 2 − (z + i ) 3 = 4 i Resf(i) = lim = z →i ( z + i ) 2 z =i π I = 2πiResf(i) = - Suy ra 2 HÖ qu¶ 2 Cho f(z) l ph©n thøc h÷u sao cho bËc cña mÉu sè lín h¬n bËc tö sè Ýt nhÊt l mét ®¬n vÞ, cã c¸c cùc ®iÓm ak víi k = 1...p n»m trong nöa mÆt ph¼ng trªn v cã c¸c cùc ®iÓm ®¬n bj víi j = 1...q n»m trªn trôc thùc. KÝ hiÖu g(z) = f(z)eiαz ta cã +∞ p q dx = 2πi ∑ Re sg(a k ) + πi ∑ Re sg(b j ) iαx ∫ f (x)e (4.9.4) k =1 j=1 −∞ Chøng minh LËp luËn t−¬ng tù nh− chøng minh hÖ qu¶ 1. +∞ +∞ e ix sin x 1 VÝ dô TÝnh tÝch ph©n I = ∫ dx = Im ∫ dx x 2 −∞ x 0 1 cã cùc ®iÓm ®¬n b = 0 thuéc trôc thùc v Resg(0) = lim eiz = 1 Ph©n thøc f(z) = z z →0 π 1 I = Im(πi) = Suy ra 2 2 HÖ qu¶ 3 Cho ®−êng cong ΓR = { | z | = R, Rez ≤ α } v h m f gi¶i tÝch trong nöa mÆt ph¼ng D = { Rez < α } ngo¹i trõ h÷u h¹n ®iÓm bÊt th−êng v lim f(z) = 0. z →∞ λz ∫ f (z)e ∀ λ > 0, lim dz = 0 (4.9.5) R → +∞ ΓR . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 75
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k Chøng minh Suy ra tõ ®Þnh lý b»ng c¸ch quay mÆt ph¼ng mét gãc π/2. HÖ qu¶ 4 Víi c¸c gi¶ thiÕt nh− hÖ qu¶ 3, kÝ hiÖu g(z) = eλzf(z) α + i∞ 1 ∑ Re sg(a λz ∫i∞e f (z)dz = ∀ λ > 0, I(λ) = ) (4.9.6) 2πi α − k Re a k < α Chøng minh KÝ hiÖu Γ = ΓR ∪ [α - iβ, α + iβ] víi R ®ñ lín ®Ó bao hÕt c¸c cùc ®iÓm cña h m f(z) Theo c«ng thøc (4.7.6) α + iβ 1 1 1 ∑ Re sg(a λz ∫ e f (z)dz = 2πi λz ∫e λz ∫ f (z)e dz + 2πi ) f (z )dz = k 2 πi Γ Re a k < α ΓR α − iβ Suy ra α + iβ 1 ∑ Re sg(a λz ∫ f (z)e iλz ∫iβe f (z)dz = )- dz k 2 πi α − Re a k < α ΓR Cho β → +∞ v sö dông hÖ qu¶ 3 chóng ta nhËn ®−îc c«ng thøc (4.9.6) B i tËp ch−¬ng 4 1. T×m miÒn héi tô v tæng cña c¸c chuçi sau ®©y. +∞ −2 +∞ ni n 2 n 1 ∑ ( z + i ) n +1 ∑ (n + 1)i ∑ (z − 2) n n +2 (z − i ) n a. c. b. n =1 n = −∞ n =0 2. T×m miÒn héi tô cña chuçi Marlaurin cña c¸c h m sau ®©y. 3z + 1 z 2 − 2 z + 19 z a. b. c. (z − 3) 2 (2 z + 5) 4 + z2 ( z − 2) 3 d. (1 - z)e-2z e. sin3z f. ln(1 + z2) 3. T×m miÒn héi tô cña chuçi Taylor t¹i ®iÓm a cña c¸c h m sau ®©y. 1 1 1 a. ,a=1 b. 2 ,a=3 c. , a = 3i z−2 1− z z − 6z + 5 1 2 f. e z − 4 z +1 , a = 2 d. sin(z2 + 4z), a = -2 e. 2 , a = 2 z .Trang 76 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k 4. X¸c ®Þnh cÊp kh«ng ®iÓm cña c¸c h m sè sau ®©y. sin 3 z a. (z2 + 9)(z2 + 4)5 b. (1 - ez)(z2 - 4)3 c. z 5. T×m h m f gi¶i tÝch t¹i z = 0 v tho¶ m n n2 + 1 πn 1 1 1 1 , n ∈ ∠* b. f(± , n ∈ ∠* c. f( ) = sin , n ∈ ∠* a. f( )= )= 3n + 1 4 n n n 2 n 6. T×m miÒn héi tô cña chuçi Laurent t¹i ®iÓm a cña c¸c h m sau ®©y. 1 1 ,a=0v a=∞ , a = 0, a = 1 v a = ∞ a. b. z−2 z(1 − z) 1 z 2 − 4z c. z2 e z , a = 0 v a = ∞ d. cos ,a=2 ( z − 2) 2 7. T×m chuçi Laurent trong cña h m f trong c¸c miÒn D sau ®©y. z 2 − 2z + 5 1+ z , 1
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k e z dz zdz ∫ z2 + 4 , Γ : | z | = 3 ∫ (z − 1)(z − 2) , Γ : | z - 2 | = 2 a. b. Γ Γ dz dz ∫z ∫ (z − 1) , Γ : x2 + y2 = 2x + 2y - 1 , Γ : x 2 + y2 = 2x c. d. +1 (z + 1) 4 2 2 Γ Γ dz dz ∫ (z − 3)(z ∫z ,Γ:|z|=2 , Γ: |z|=2 e. f. + 1) +1 5 10 Γ Γ n 1 dz ∫ sin z ∫z dz , Γ : | z | = 1 , Γ : 4x 2 + 2y2 = 3 g. h. +1 3 Γ Γ 11. TÝnh c¸c tÝch ph©n x¸c ®Þnh sau ®©y π 2π π dϕ dϕ dϕ ∫ 13 + 12 sin ϕ a. ∫ b. ∫ c. 1 + cos ϕ 0 (1 + cos ϕ) 2 −π 0 12. T×m sè nghiÖm cña c¸c ®a thøc trong miÒn D sau ®©y. z5 + 2z2 + 8z + 1, | z | < 1 v 1 ≤ | z | 0 c. 2z4 - 3z3 + 3z2 - z + 1, Rez > 0 v Imz > 0 d. 13. TÝnh c¸c tÝch ph©n suy réng sau ®©y. +∞ +∞ +∞ x2 + 1 dx dx a. ∫ 2 b. ∫ 4 ∫ (x dx c. − ∞ ( x + 9) −∞ x + 1 + 1)(x 2 + 4) 2 2 0 +∞ +∞ +∞ dx x cos dx x sin x ∫ (x ∫ (x ∫x d. e. f. dx + 1) n + 4) 2 − 2x + 10 2 2 2 −∞ −∞ 0 +∞ 2 +∞ +∞ 2 x 2 ln x sin x ln x g. ∫ h. ∫ i. ∫ dx dx dx 0 1+ x 0 (1 + x ) 2 22 x − ∞ x(1 − x ) 1 1 dx ∫ ∫ j. k. dx x +1 (1 − x)(1 + x) 2 3 −1 0 . Trang 78 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Ch−¬ng 5 BiÕn ®æi fourier v BiÕn ®æi laplace §1. TÝch ph©n suy réng • Trong ch−¬ng n y chóng ta kÝ hiÖu F(3, ∀) = { f : 3 → ∀} l ®¹i sè c¸c h m biÕn thùc, trÞ phøc +∞ ∫ | f (t) | dt l || f ||∞ = SupR| f(t) | v || f ||1 = c¸c chuÈn trªn F(3, ∀) −∞ L∞ = { f ∈ F(3, ∀) : || f ||∞ ≤ +∞ } l ®¹i sè c¸c h m cã module bÞ chÆn C0 = { f ∈ C(3, ∀) : lim f(t) = 0 } l ®¹i sè c¸c h m liªn tôc, dÇn vÒ kh«ng t¹i ∞ t →∞ L = { f ∈ F(3, ∀) : || f ||1 ≤ +∞ } l ®¹i sè c¸c h m kh¶ tÝch tuyÖt ®èi trªn 3 1 Chóng ta ® biÕt r»ng h m kh¶ tÝch tuyÖt ®èi l liªn tôc tõng khóc, dÇn vÒ kh«ng t¹i v« cïng v bÞ chÆn trªn to n 3. Tøc l L1 ⊂ CM0 ⊂ L∞ • Cho kho¶ng I ⊂ 3 v h m F : I × 3 → ∀, (x, t) α F(x, t) kh¶ tÝch trªn 3 víi mçi x ∈ I cè ®Þnh. TÝch ph©n suy réng +∞ ∫ F(x, t )dt víi x ∈ I f(f) = (5.1.1) −∞ gäi l bÞ chÆn ®Òu trªn kho¶ng I nÕu cã h m ϕ ∈ L1 sao cho ∀ (x, t) ∈ I × 3, F(x, t) ≤ | ϕ(t) | §Þnh lý TÝch ph©n suy réng bÞ chÆn ®Òu cã c¸c tÝnh chÊt sau ®©y 1. NÕu h m F(x, t) liªn tôc trªn miÒn I × 3 th× h m f(x) liªn tôc trªn kho¶ng I +∞ ∂F ∂F ∫ ∂x (x, t )dt liªn tôc trªn miÒn I × 3 v tÝch ph©n 2. NÕu c¸c h m F(x, t), còng bÞ ∂x −∞ chÆn ®Òu trªn kho¶ng I th× h m f(x) cã ®¹o h m trªn kho¶ng I +∞ +∞ ∂F d dx −∫ ∫ ∂x (x, t )dt ∀ x ∈ I, F(x, t )dt = ∞ −∞ 3. NÕu h m F(x, t) liªn tôc trªn I × 3 th× h m f(x) kh¶ tÝch ®Þa ph−¬ng trªn kho¶ng I +∞ b b ∫ ∫ F(x, t )dx dt ∫ f (x)dx = ∀ [a, b] ⊂ I, −∞ a a • KÝ hiÖu . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 79
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p8
11 p | 58 | 7
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p3
11 p | 70 | 6
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p2
11 p | 57 | 6
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p6
8 p | 88 | 6
-
Giáo trình hướng dẫn phân tích nguyên lý chồng chất các chấn động trong hiện tượng giao thoa p8
5 p | 66 | 5
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p1
8 p | 80 | 5
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p7
11 p | 66 | 5
-
Giáo trình hướng dẫn phân tích mạch tích hợp của vi mạch chuyển đổi đo lường p5
11 p | 72 | 5
-
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p9
5 p | 67 | 5
-
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p7
5 p | 74 | 5
-
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p5
5 p | 95 | 5
-
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p2
5 p | 86 | 5
-
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p6
5 p | 68 | 5
-
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p10
5 p | 54 | 3
-
Giáo trình hướng dẫn phân tích nguyên lý chồng chất các chấn động trong hiện tượng giao thoa p5
5 p | 82 | 3
-
Giáo trình hướng dẫn phân tích nguyên lý chồng chất các chấn động trong hiện tượng giao thoa p3
5 p | 92 | 3
-
Giáo trình hướng dẫn phân tích năng suất phân cách của các dụng cụ quang học theo tiêu chuẩn nhiễu xạ p8
5 p | 86 | 3
-
Giáo trình hướng dẫn phân tích các loại diode phân cực trong bán kì âm tín hiệu p4
5 p | 80 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn