intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p2

Chia sẻ: Fdsf Gfjy | Ngày: | Loại File: PDF | Số trang:5

87
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p2', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p2

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k 2 (cos π + isin π ) cã c¸c c¨n bËc 3 sau ®©y 1. Sè phøc z = 1 + i = 4 4 w0 = 6 2 (cos π + isin π ), w1 = 6 2 (cos 9π + isin 9π ), w2 = 6 2 (cos 17π + isin 17π ) 12 12 12 12 12 12 2 2. Gi¶i ph−¬ng tr×nh x - x +1 = 0 1± i 3 Ta cã ∆ = -3 < 0 ph−¬ng tr×nh cã nghiÖm phøc x1,2 = 2 2π ik HÖ qu¶ KÝ hiÖu ωk = e , k = 0...(n - 1) l c¸c c¨n bËc n cña ®¬n vÞ. n n −1 ∑ω ωk = ωn-k ωk = (ω1)k 1. 2. 3. =0 k k =0 2π i = ω1 . Suy ra ω2 = j2 = j v 1 + j + j2 = 0 VÝ dô Víi n = 3, kÝ hiÖu j = e 3 §4. C¸c øng dông h×nh häc ph¼ng • KÝ hiÖu V l mÆt ph¼ng vect¬ víi c¬ së trùc chuÈn d−¬ng (i, j). Anh x¹ Φ : ∀ → V, z = x + iy α v = xi + yj (1.4.1) l mét song ¸nh gäi l biÓu diÔn vect¬ cña sè phøc. Vect¬ v gäi l ¶nh cña sè phøc z, cßn sè phøc z gäi l to¹ vÞ phøc cña vect¬ v v kÝ hiÖu l v(z). KÝ hiÖu P l mÆt ph¼ng ®iÓm víi hÖ to¹ ®é trùc giao (Oxy). Anh x¹ Φ : ∀ → P, z = x + iy α M(x, y) (1.4.2) l mét song ¸nh gäi l biÓu diÔn h×nh häc cña sè phøc. §iÓm M gäi l ¶nh cña sè phøc z cßn sè phøc z gäi l to¹ vÞ phøc cña ®iÓm M v kÝ hiÖu l M(z). Nh− h×nh bªn, M(z) víi z = x + iy, M1(- z ), M2(-z) v M3( z ). M M1 NÕu z = x ∈ 3 th× ®iÓm M(z) ∈ (Ox), cßn nÕu z = iy th× ®iÓm M(z) ∈ (Oy). Do vËy mÆt ph¼ng (Oxy) cßn gäi l mÆt ph¼ng 0 phøc, trôc (Ox) l trôc thùc v trôc (Oy) l trôc ¶o. Sau n y M2 M3 chóng ta sÏ ®ång nhÊt mçi sè phøc víi mét vect¬ hay mét ®iÓm trong mÆt ph¼ng v ng−îc l¹i. §Þnh lý Cho c¸c vect¬ u(a), v(b) ∈ V, sè thùc λ ∈ 3 v ®iÓm M(z) ∈ P |u|=|a| ∠(i, u) = arg(a) Φ(λa + b) = λu + v 1. | OM | = | z | ∠(i, OM ) = arg(z) 2. Chøng minh Trang 10 Gi¸o Tr×nh To¸n Chuyªn §Ò
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k Suy ra tõ c¸c c«ng thøc (1.4.1) v (1.4.2) HÖ qu¶ 1 Trong mÆt ph¼ng cho c¸c ®iÓm A(a), B(b), C(c) v D(d) AB (b - a), AB = | b - a |, ∠(i, AB ) = arg(b - a) 1. d−c ∠( AB , CD ) = ∠(i, CD ) - ∠(i, AB ) = arg 2. b−a Chøng minh Suy ra tõ ®Þnh lý 1 1 1 VÝ dô Cho z ∈ ∀ - {-1, 0, 1} v A(1), B(-1), M(z), N( ) v P( (z + )). Chøng minh z z 2 r»ng ®−êng th¼ng (MN) l ph©n gi¸c cña gãc ∠( PA , PB ). (z − 1) 2 1 1 M Ta cã ∠(i, AP ) = arg( (z + ) - 1) = arg 2z 2 z P (z + 1) 2 1 1 ∠(i, BP ) = arg( (z + ) + 1) = arg O A B 2z 2 z N Suy ra (z − 1) 2 (z + 1) 2 1 ∠(i, AP ) + ∠(i, BP ) = arg = 2arg(z - ) = 2∠(i, MN ) 2z 2z z HÖ qu¶ 2 Víi c¸c kÝ hiÖu nh− trªn d−c d−c ⇔ arg = 0 [π] ⇔ ∈3 1. Hai ®−êng th¼ng (AB) // (CD) b−a b−a d−c π d−c 2. Hai ®−êng th¼ng (AB) ⊥ (CD) ⇔ arg = [π] ⇔ ∈ i3 b−a b−a 2 c−a c−a ⇔ arg = 0 [π] ⇔ ∈3 3. Ba ®iÓm A, B, C th¼ng h ng b−a b−a Chøng minh Suy ra tõ c¸c hÖ thøc hÖ qu¶ 1 VÝ dô Trong mÆt ph¼ng t×m ®iÓm A(z) sao cho ba ®iÓm A(z), B(iz) v C(i) th¼ng h ng KÝ hiÖu z = x + iy, ta cã iz − i A, B, C th¼ng h ng ⇔ = k ∈ 3 ⇔ -y + i(x - 1) = (kx) + ik(y - 1) z−i 1− k k ( k − 1) ⇔ − y = kx x − 1 = k (y − 1) ⇔ x = 2 víi k ∈ 3 ,y= 2 k +1 k +1  • ¸nh x¹ Φ : P → P, M α N gäi l mét phÐp biÕn h×nh Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 11
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k PhÐp biÕn h×nh M α N = M + v gäi l phÐp tÜnh tiÕn theo vect¬ v PhÐp biÕn h×nh M α N = A + k AM (k > 0) gäi l phÐp vi tù t©m A, hÖ sè k PhÐp biÕn h×nh M α N sao cho ∠( AM , AN ) = α gäi l phÐp quay t©m A, gãc α TÝch cña phÐp tÜnh tiÕn, phÐp vi tù v phÐp quay gäi l phÐp ®ång d¹ng. §Þnh lý Cho phÐp biÕn h×nh Φ : M α N 1. PhÐp biÕn h×nh Φ l phÐp tÜnh tiÕn ⇔ z’ = z + b víi b ∈ ∀ 2. PhÐp biÕn h×nh Φ l phÐp vi tù ⇔ z’ = a + k(z - a) víi k ∈ 3+, a ∈ ∀ ⇔ z’ = a + eiα(z - a) víi α ∈ 3, a ∈ ∀ 3. PhÐp biÕn h×nh Φ l phÐp quay 4. PhÐp biÕn h×nh Φ l phÐp ®ång d¹ng ⇔ z’ = az + b víi a, b ∈ ∀ Chøng minh Suy ra tõ ®Þnh nghÜa c¸c phÐp biÕn h×nh v to¹ vi phøc. VÝ dô Cho A(a), B(b) v C(c). T×m ®iÒu kiÖn cÇn v ®ñ ®Ó ∆ABC l tam gi¸c ®Òu π i A ∆ABC l tam gi¸c ®Òu thuËn ⇔ (a - b) = e 3 (c - b) ⇔ (a - b) = - j2(c - b) ⇔ a + jb + j2c = 0 T−¬ng tù, ∆ACB l tam gi¸c ®Òu nghÞch +π 3 ⇔ (a - b) = - j(c - b) ⇔ a + jc + j2b = 0 B C Suy ra ∆ABC l tam gi¸c ®Òu ⇔ (a + jb + j2c)(a + jc + j2b) = 0 ⇔ a2 + b2 + c2 = ab + bc + ca §5. D y trÞ phøc • ¸nh x¹ ϕ : ∠ → ∀, n α zn = xn + iyn (1.5.1) gäi l d y sè phøc v kÝ hiÖu l (zn)n∈∠. D y sè thùc (xn)n∈∠ gäi l phÇn thùc, d y sè thùc (yn)n∈∠ l phÇn ¶o, d y sè thùc d−¬ng (| zn |)n∈∠ l module, d y sè phøc ( z n )n∈∠ l liªn hîp phøc cña d y sè phøc. D y sè phøc (zn)n∈∠ gäi l dÇn ®Õn giíi h¹n a v kÝ hiÖu l lim zn = a nÕu n → +∞ ∀ ε > 0, ∃ N ∈ ∠ : ∀ n > N ⇒ | zn - a | < ε lim zn = ∞ nÕu D y sè phøc (zn)n∈∠ gäi l dÇn ra v« h¹n v kÝ hiÖu l n → +∞ ∀ M > 0, ∃ N ∈ ∠ : ∀ n > N ⇒ | zn | > M D y cã giíi h¹n module h÷u h¹n gäi l d y héi tô. D y kh«ng héi tô gäi l d y ph©n kú. Trang 12 Gi¸o Tr×nh To¸n Chuyªn §Ò
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k §Þnh lý Cho d y sè phøc (zn = xn + iyn)n∈∠ v a = α + iβ ∈ ∀ lim zn = a ⇔ lim xn = α v lim yn = β (1.5.2) n → +∞ n → +∞ n → +∞ Chøng minh Gi¶ sö lim zn = a ⇔ ∀ ε > 0, ∃ N ∈ ∠ : ∀ n > N ⇒ | zn - a | < ε n → +∞ ⇒ ∀ n > N ⇒ | x n - α | < ε v | yn - β | < ε lim xn = α v lim yn = β Suy ra n → +∞ n → +∞ Ng−îc l¹i lim xn = α v lim yn = β n → +∞ n → +∞ ⇔ ∀ ε > 0, ∃ N ∈ ∠ : ∀ n > N ⇒ | xn - α | < ε/2 v | yn - β | < ε/2 ⇒ ∀ n > N ⇒ | zn - a | < ε Suy ra lim zn = a n → +∞ HÖ qu¶ lim zn = a ⇔ lim z n = a ⇒ lim | zn | = | a | 1. n → +∞ n → +∞ n → +∞ lim (λzn + z’n) = λ lim zn + lim z’n 2. n → +∞ n → +∞ n → +∞ lim (zn z’n) = lim zn lim z’n v lim (zn / z’n) = lim zn / lim z’n n → +∞ n → +∞ n → +∞ n → +∞ n → +∞ n → +∞ 3. C¸c tÝnh chÊt kh¸c t−¬ng tù giíi h¹n d y sè thùc • Cho d y sè phøc (zn = xn + iyn)n∈∠ . Tæng v« h¹n +∞ ∑z = z0 + z1 + .... + zn + ... (1.5.3) n n =0 gäi l chuçi sè phøc. +∞ +∞ ∑ x n gäi l phÇn thùc, chuçi sè thùc ∑y l phÇn ¶o, chuçi sè thùc Chuçi sè thùc n n =0 n =0 +∞ +∞ ∑ | z n | l module, chuçi sè phøc ∑z l liªn hîp phøc cña chuçi sè phøc. d−¬ng n n =0 n =0 n ∑z gäi l tæng riªng thø n cña chuçi sè phøc. NÕu d y tæng riªng Sn dÇn KÝ hiÖu Sn = k k =0 ®Õn giíi h¹n S cã module h÷u h¹n th× chuçi sè phøc gäi l héi tô ®Õn tæng S v kÝ hiÖu l +∞ ∑z = S. Chuçi kh«ng héi tô gäi l chuçi ph©n kú. n n =0 +∞ ∑z = 1 + z + ... + zn + ... ( | z | < 1) n VÝ dô XÐt chuçi sè phøc n =0 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 13
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k z n +1 − 1 1 → Sn = 1 + z + ... + zn = Ta cã +∞ z −1 1− z VËy chuçi ® cho héi tô. Tõ ®Þnh nghÜa chuçi sè phøc v c¸c tÝnh chÊt cña d y sè phøc, cña chuçi sè thùc suy ra c¸c kÕt qu¶ sau ®©y. +∞ ∑ (z = x n + iy n ) v S = α + iβ ∈ ∀ §Þnh lý Cho chuçi sè phøc n n =0 +∞ +∞ +∞ ∑ zn = S ⇔ ∑xn = α v ∑y =β (1.5.4) n n =0 n =0 n =0 Chøng minh Suy ra tõ c¸c ®Þnh nghÜa v c«ng thøc (1.5.2) HÖ qu¶ +∞ +∞ +∞ ∑| zn | = | S | ⇒ ∑ zn = S ⇔ ∑z 1. =S n n =0 n =0 n =0 2. C¸c tÝnh chÊt kh¸c t−¬ng tù chuçi sè thùc +∞ +∞ ∑ z n gäi l héi tô tuyÖt ®èi nÕu chuçi module ∑| z • Chuçi sè phøc | héi tô. Râ r ng n n =0 n =0 chuçi héi tô tuyÖt ®èi l chuçi héi tô. Tuy nhiªn ®iÒu ng−îc l¹i nãi chung l kh«ng ®óng. Ngo i ra, cã thÓ chøng minh r»ng chØ khi chuçi sè phøc héi tô tuyÖt ®èi th× tæng v« h¹n (1.5.3) míi cã c¸c tÝnh chÊt giao ho¸n, kÕt hîp, ... t−¬ng tù nh− tæng h÷u h¹n. §6. H m trÞ phøc • Cho kho¶ng I ⊂ 3, ¸nh x¹ f : I → ∀, t α f(t) = u(t) + iv(t) (1.6.1) gäi l h m trÞ phøc. H m u(t) = Ref(t) gäi l phÇn thùc, h m v(t) = Imf(t) l phÇn ¶o, h m | f(t) | l module, h m f (t ) l liªn hîp phøc cña h m trÞ phøc. Trªn tËp f(I, ∀) c¸c h m trÞ phøc x¸c ®Þnh trªn kho¶ng I, chóng ta ®Þnh nghÜa c¸c phÐp to¸n ®¹i sè t−¬ng tù nh− trªn tËp f(I, 3) c¸c h m trÞ thùc x¸c ®Þnh trªn kho¶ngI. H m trÞ phøc f(t) gäi l bÞ chÆn nÕu h m module | f(t) | bÞ chÆn. Cho h m f : I → ∀ v α ∈ I . H m f gäi l dÇn ®Õn giíi h¹n L khi t dÇn ®Õn α v kÝ Trang 14 Gi¸o Tr×nh To¸n Chuyªn §Ò
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
5=>2