Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p7
lượt xem 3
download
Biến Đổi Fourier V Biến Đổi Laplace 5. Đạo h m gốc Giả sử h m f v các đạo h m của nó l các h m gốc. f’(t) ↔ zF(z) - f(0) v ∀ n ∈ ∠, f(n)(t) ↔ zn F(z) - zn-1f(0) - ... - f(n-1)(0) (5.8.5) Chứng minh f’(t) ↔Dịch chuyển gốc Nếu h m f khả tích tuyệt đối thì với mọi số thực α h m f(t - α) cũng khả tích tuyệt đối. (5.4.2) ∀ α ∈ 3, f(t - α) ↔
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p7
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k §4. TÝnh chÊt cña biÕn ®æi Fourier • Gi¶ sö c¸c h m m chóng ta nãi ®Õn sau ®©y kh¶ tÝch tuyÖt ®èi v do ®ã lu«n cã ¶nh v nghÞch ¶nh Fourier. KÝ hiÖu f ↔ F víi f(t) l h m gèc v F(ω) l h m ¶nh t−¬ng øng. 1. TuyÕn tÝnh NÕu h m f v h m g kh¶ tÝch tuyÖt ®èi th× víi mäi sè phøc λ h m λf + g còng kh¶ tÝch tuyÖt ®èi. ∀ λ ∈ ∀, λf(t) + g(t) ↔ λF(z) + G(z) (5.4.1) Chøng minh +∞ +∞ +∞ ∫ (λf (t ) + g(t ))e − iωt − i ωt − i ωt dt = λ ∫ f (t )e ∫ g(t )e dt + dt −∞ −∞ −∞ 2. DÞch chuyÓn gèc NÕu h m f kh¶ tÝch tuyÖt ®èi th× víi mäi sè thùc α h m f(t - α) còng kh¶ tÝch tuyÖt ®èi. ∀ α ∈ 3, f(t - α) ↔ e-iαωF(ω) (5.4.2) Chøng minh +∞ +∞ -iαω − iωt − iω( t − α ) ∫ f (t − α)e ∫ f (t − α)e d( t − α) §æi biÕn τ = t - α dt = e −∞ −∞ 3. §ång d¹ng NÕu h m f kh¶ tÝch tuyÖt ®èi th× víi mäi sè thùc α kh¸c kh«ng h m f(αt) còng kh¶ tÝch tuyÖt ®èi. ω 1 ∀ α ∈ 3*, f(αt) ↔ F( ) v f(-t) ↔ F(-ω) (5.4.3) |α| α Chøng minh ω +∞ +∞ sgn(α) − i ( αt ) − i ωt ∫ f (αt )e dt = α −∫ f ( α t ) e α d( α t ) §æi biÕn τ = αt −∞ ∞ sin ω VÝ dô Cho f(t) = 1 | t | ≤ 1 ↔ F(ω) = 2 0 | t | > 1 ω sin(ω / 3) sin ω 1 Ta cã g(t) = f(3t + 3) - f(t + 3) ↔ G(ω) = 2ei3ω - eØ3ω ω ω 2 4. §¹o h m gèc Gi¶ sö h m f v c¸c ®¹o h m cña nã kh¶ tÝch tuyÖt ®èi. f’(t) ↔ iωF(ω) v ∀ n ∈ ∠, f(n)(t) ↔ (iω)nF(ω) (5.4.4) Chøng minh +∞ +∞ +∞ +∞ ∫ f ′(t)e dt = f (t )e − iωt + (iω) ∫ f (t )e −iωt dt = (iω) ∫ f (t )e −iωt dt − iωt f’(t) ↔ −∞ −∞ −∞ −∞ Qui n¹p suy ra c«ng thøc thø hai. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 85
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k 5. TÝch ph©n gèc Gi¶ sö h m f v tÝch ph©n cña nã kh¶ tÝch tuyÖt ®èi. t 1 F(ω) + πF(0)δ(ω) ∫ f (τ)dτ ↔ (5.4.5) iω −∞ Chøng minh t ∫ f (τ)dτ ↔ G(ω), g’(t) = f(t) KÝ hiÖu g(t) = −∞ ∀ ω ∈ 3, (iω)G(ω) = F(ω) Theo tÝnh chÊt 4 1 G(ω) = F(ω) víi ω ≠ 0 v G(0) = πF(0)δ(ω) Suy ra iω 6. ¶nh cña tÝch chËp NÕu h m f v h m g kh¶ tÝch tuyÖt ®èi th× tÝch chËp cña chóng còng kh¶ tÝch tuyÖt ®èi. (f∗g)(t) ↔ F(ω)G(ω) (5.4.6) Chøng minh +∞ +∞ +∞ +∞ − iωt ∫∞ −∫∞f (t − τ)g(τ)dτ e dt = ∫ ∫ f (t − τ)e dt g(τ)e − iωτ dτ − iω( t − τ ) (f∗g)(t) ↔ − −∞ − ∞ = F(ω)G(ω) 7. HÖ thøc Parseval Gi¶ sö h m f v h m ¶nh F cña nã kh¶ tÝch tuyÖt ®èi. +∞ +∞ 1 2 ∫ | f (t) | dt = ∫ F(ω) dω 2 (5.4.7) 2π −∞ −∞ Chøng minh +∞ +∞ +∞ 1 +∞ * ∫∞ 2π −∫∞F (ω)e dω dt f (t ) − itω ∫ | f (t) | dt = ∫ f (t)f (t )dt = 2 * −∞ −∞ − +∞ +∞ +∞ 1 * 1 2 ∫∞ −∫∞f (t )e dt F (ω)dω = 2π − itω ∫ F(ω) dω = 2π − −∞ VÝ dô t dη 1. δ(t) ↔ 1 ⇒ η(t) = ∫ δ(τ)dτ ↔ 1 + πδ(ω) v δ(t) = ↔ iω( 1 + πδ(ω)) ≡ 1 iω iω dt −∞ t 1 1 2. g(t) = ∫ f (τ)dτ = (f∗η)(t) ↔ F(ω)( + πδ(ω)) = F(ω) + πF(0)δ(ω) iω iω −∞ 1 1 1 1 1 3. f(t) = [e-λtη(t)]∗[e-µtη(t)] (λ ≠ µ) ↔ F(ω) = − = ( ) λ + iω µ + iω µ − λ λ + iω µ + iω ) 1 (e-λt - e-µt)η(t) ≡ f(t) ↔ F (t) = µ−λ Trang 86 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k C«ng thøc ®èi ngÉu So s¸nh cÆp c«ng thøc Fourier (5.3.1) v (5.3.2) ( +∞ 1 i ( − ω) σ ∫∞f (σ)e dσ = 2π F (-ω) ≡ 2πf(-ω) f(t) ↔ F(ω) ⇒ F(t) ↔ 2π 2π − +∞ 1 1ˆ 1 −i(− t )τ ∫∞f (τ)e dτ = 2π f (-t) ≡ 2π f(-t) F(ω) ↔ f(t) ⇒ f(ω) ↔ (5.4.8) 2π − Tõ ®ã suy ra tÝnh ®èi ngÉu cña cÆp biÕn ®æi Fourier. NÕu biÕn ®æi Fourier thuËn cã tÝnh chÊt α th× biÕn ®èi Fourier nghÞch còng cã tÝnh chÊt ®ã chØ sai kh¸c mét h»ng sè 2π v biÕn sè cã dÊu ng−îc l¹i. Chóng ta cã c¸c c«ng thøc sau ®©y. eiαtf(t) ↔ F(ω - α) ∀α∈3 2’. DÞch chuyÓn ¶nh (5.4.2’) 1 t ∀ α ∈ 3* f ( ) ↔ F(αω) 3’. §ång d¹ng (5.4.3’) |α| α - itf(t) ↔ F’(ω) v ∀ n ∈ ∠, (-it)nf(t) ↔ F(n)(ω) 4’. §¹o h m ¶nh (5.4.4’) ω - 1 f(t) + πf(0)δ(t) ↔ ∫ F(σ)dσ 5’. TÝch ph©n ¶nh (5.4.5’) it −∞ +∞ 1 1 ∫∞F(σ)G(ω − σ)dσ = 2π (F∗G)(ω) f(t)g(t) ↔ 6’. ¶nh cña tÝch (5.5.6’) 2π − VÝ dô 2λ 2λ f(t) = e-λ|t| (λ > 0) ↔ F(ω) = ⇒ g(t) = 2 2 ↔ G(ω) = 2πe-λ|ω| 1. λ +t λ +ω 22 1 11 (Rea > 0) ↔ f(t) = e-atη(t) ⇒ G(ω) = e-aωη(ω) ↔ g(t) = F(ω) = 2. a + iω 2 π a − it iαt u(t) =1 ↔ 2πδ(ω) ⇒ ∀ α ∈ 3, e ↔ 2πδ(ω - α) 3. π π 1 1 -iαt f(t) = sinαt = eiαt - e ↔ F(ω) = δ(ω - α) - δ(ω + α) 2i 2i i i 1π π G(ω) = sinαω ↔ g(t) = ( δ(-t - α) + δ(-t + α)) 2π i i §5. T×m ¶nh, gèc cña biÕn ®æi Fourier • Tõ cÆp c«ng thøc ®èi ngÉu (5.4.8) suy ra r»ng nÕu chóng ta cã ®−îc mét c«ng thøc cho h m ¶nh th× sÏ cã c«ng thøc t−¬ng tù cho h m gèc v ng−îc l¹i. V× vËy trong môc n y chóng ta chØ ®−a ra c«ng thøc t×m ¶nh hoÆc c«ng thøc t×m gèc. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 87
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k ¶nh cña h m tuÇn ho n Do h m mò g(ω) = e-iωt tuÇn ho n víi chu kú T = 2π nªn h m ¶nh F(ω) lu«n l h m tuÇn ho n víi chu kú T = 2π. Ng−îc l¹i, ta cã +∞ 1 dt = eiαt − iωt ∫ 2πδ(ω − α)e ∀ α ∈ 3, F1(ω) = 2πδ(ω - α) ↔ f1(t) = 2π −∞ NÕu h m f(t) l h m tuÇn ho n chu kú T, khai triÓn Fourier T +∞ f (t )e − ikαt dt , k ∈ 9 v α = 2π 1 ∑ a k e ikαt víi ak = T∫ f(t) = T -∞ 0 Do tÝnh tuyÕn tÝnh +∞ ∑a f(t) ↔ F(ω) = 2 πδ(ω − kα ) (5.5.1) k -∞ VÝ dô +∞ 1 ∑ δ(t − nT ) tuÇn ho n chu kú l T v ∀ k ∈ 9, a k = 1. H m f(t) = suy ra T −∞ 2 π +∞ 2π +∞ ∑ δ(t − nT ) ↔ F(ω) = ∑ δ(ω − k T ) f(t) = T −∞ −∞ 1 -iαt 1 iαt 2. Ta cã f(t) = cosαt = e + e ↔ F(ω) = πδ(ω + α) + πδ(ω - α) suy ra 2 2 +∞ 1 1 1 ∫∞F(σ)G(ω − σ)dσ = 2 G(ω + α) + 2 G(ω - α) víi g(t) ↔ G(ω) f(t)g(t) ↔ 2π − ¶nh cña h m trÞ thùc KÝ hiÖu f*(t) l liªn hîp phøc cña h m f(t). Khi ®ã nÕu h m f kh¶ tÝch tuyÖt ®èi th× h m f* còng kh¶ tÝch tuyÖt ®èi v ta cã * +∞ +∞ ∫∞f (t )e dt = −∫∞f (t )e dt = F (- ω) − i ωt − i ( − ω) t * * − Tõ ®ã suy ra c«ng thøc f*(t) ↔ F*(-ω) (5.5.2) • Gi¶ sö ∀ ω ∈ 3, F(ω) = R(ω) + iI(ω) = |F(ω)| eΦ(ω) NÕu f(t) l h m trÞ thùc f*(t) = f(t) ⇒ F*(-ω) = R(-ω) - iI(-ω) ≡ F(ω) = R(ω) + iI(ω) Tõ ®ã suy ra R(-ω) = R(ω), I(-ω) = - I(ω) v |F(-ω)| = |F(ω)|, Φ(-ω) = - Φ(ω) (5.5.3) NÕu f(t) l h m trÞ thùc v ch½n f*(t) = f(t) v f(-t) = f(t) ⇒ F*(-ω) = F(-ω) = F(ω) l h m trÞ thùc v ch½n NÕu f(t) l h m trÞ thùc v lÎ Trang 88 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace .d o .d o c u -tr a c k c u -tr a c k f*(t) = f(t) v f(-t) = - f(t) ⇒ F*(-ω) = - F(-ω) = F(ω) l h m thuÇn ¶o v lÎ NÕu f(t) l h m trÞ thùc bÊt k×, ph©n tÝch 1 1 f(t) = [(f(t) + f(-t)] + [f(t) - f(-t)] = Ef(t) + Of(t) 2 2 víi Ef l h m ch½n v Of l h m lÎ. Dïng tÝnh tuyÕn tÝnh v c¸c kÕt qu¶ ë trªn f(t) ↔ R(ω) + iI(ω) = F(ω) (5.5.4) 2λ 1 VÝ dô f(t) = e-λ|t| = 2E{ e-λtη(t) } (λ > 0) ↔ F(ω) = 2Re{ }= 2 λ + iω λ + ω2 Gèc cña h m h÷u tû Ta ® cã 1 (Rea > 0) ↔ e-atη(t) (5.5.5) a + iω Sö dông c«ng thøc ®¹o h m ¶nh v qui n¹p suy ra t n −1 1 (Rea > 0) ↔ e-atη(t) (5.5.6) ( n − 1)! (a + iω) n XÐt tr−êng hîp h m F(ω) l mét ph©n thøc h÷u tû thùc sù. Do h m F(ω) kh¶ tÝch tuyÖt ®èi nªn nã kh«ng cã cùc ®iÓm thùc. Tr−íc hÕt chóng ta ph©n tÝch F(ω) th nh tæng c¸c ph©n thøc ®¬n v ph©n thùc béi. Sau ®ã sö dông c¸c c«ng thøc (5.4.1) - (5.4.7’) ®Ó ®−a vÒ c¸c tr−êng hîp trªn. Trong c¸c tr−êng hîp phøc t¹p h¬n cã thÓ ph¶i dïng ®Õn c¸c c«ng thøc ¶nh cña tÝch hoÆc ¶nh cña tÝch chËp ®Ó t×m gèc. VÝ dô T×m gèc cña ph©n thøc (iω) 2 + 3iω + 2 B C 1. F(ω) = =A+ + 3 + iω (3 + iω) 2 (iω) + 6iω + 9 2 1 2 ↔ f(t) = δ(t) - e-3tη(t) + 2te-3tη(t) =1- + 3 + iω (3 + iω) 2 2ω − 1 2ω − 1 A B 2. F(ω) = = = + − (iω) + 4i(iω) + 5 1 + 2i − iω 1 − 2i + iω ω − 4ω + 5 2 2 −2+i 2+i ↔ f(t) = (-2 + i)e-(1+2i)tη(t) - (2 + i)e-(1-2i)tη(t) = - 1 + 2 i − iω 1 − 2 i + iω Ph−¬ng tr×nh vi ph©n hÖ sè h»ng Cho ph−¬ng tr×nh vi ph©n hÖ sè h»ng N M ∑a y (t ) = ∑ b j x ( j) (t ) víi N ≥ M (k) (5.5.7) k k =0 j =0 ChuyÓn qua ¶nh Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 89
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình Giải tích các hàm nhiều biến: Những nguyên lý cơ bản và tính toán thực hành - Viện Toán học
352 p | 412 | 163
-
CHƯƠNG 2 PHÂN TÍCH ĐỊNH TÍNH
34 p | 826 | 162
-
Giáo trình Phân tích định tính: Phần 2 - TS.DS. Lê Thị Hải Yến (chủ biên)
66 p | 204 | 87
-
Giáo trình phân tích các tổn thất của dòng khí khi chuyển động qua cánh động cơ phụ thuộc vào đặc tính hình học và chế độ dòng chảy p1
5 p | 88 | 9
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p10
5 p | 82 | 3
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p3
5 p | 77 | 3
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p8
5 p | 98 | 3
-
Giáo trình phân tích quy trình ứng dụng cấu tạo các đặc tính của diot trong mạch xoay chiều p1
9 p | 44 | 3
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5
5 p | 73 | 3
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p9
5 p | 88 | 3
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p10
5 p | 65 | 3
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p9
5 p | 68 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p8
5 p | 55 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p7
5 p | 58 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p4
5 p | 61 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p3
5 p | 59 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p2
5 p | 63 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p6
5 p | 95 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn