intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Khóa luận tốt nghiệp: Biên soạn hệ thống lý thuyết và bài tập phần đạo hàm và vi phân của hàm nhiều biến cho giáo trình giải tích 2

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:210

45
lượt xem
11
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài nhằm hoàn thiện ý tưởng một giáo trình Giải tích bằng tiếng Việt có thể dùng làm tài liệu tham khảo cho sinh viên vật lý – Trường Đại học Sư phạm Thành phố Hồ Chí Minh. Để hiểu rõ hơn mời các bạn cùng tham khảo nội dung chi tiết của khoá luận này.

Chủ đề:
Lưu

Nội dung Text: Khóa luận tốt nghiệp: Biên soạn hệ thống lý thuyết và bài tập phần đạo hàm và vi phân của hàm nhiều biến cho giáo trình giải tích 2

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH KHOA VẬT LÝ NGUYỄN VĂN DŨNG KHÓA LUẬN TỐT NGHIỆP BIÊN SOẠN HỆ THỐNG LÝ THUYẾT VÀ BÀI TẬP PHẦN ĐẠO HÀM VÀ VI PHÂN CỦA HÀM NHIỀU BIẾN CHO GIÁO TRÌNH GIẢI TÍCH 2 Chuyên ngành: Sư phạm Vật lý TP. Hồ Chí Minh, năm 2019
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH KHOA VẬT LÝ BIÊN SOẠN HỆ THỐNG LÝ THUYẾT VÀ BÀI TẬP PHẦN ĐẠO HÀM VÀ VI PHÂN CỦA HÀM NHIỀU BIẾN CHO GIÁO TRÌNH GIẢI TÍCH 2 Người thực hiện: Nguyễn Văn Dũng Người hướng dẫn khoa học: ThS. Nguyễn Lê Anh TP. Hồ Chí Minh, năm 2019
  3. LỜI CẢM ƠN Từ những ngày đầu thực hiện đến khi hoàn thành khóa luận tốt nghiệp, đó là cả một quá trình cố gắng học tập và trưởng thành lên từng ngày của bản thân em. Tuy nhiên trên thực tế không có sự thành công nào mà không gắn liền với sự hỗ trợ, giúp đỡ, dù ít hay nhiều, dù gián tiếp hay trực tiếp của người khác. Vì vậy, xin cho phép em được bày tỏ lòng biết ơn sâu sắc đến: − Quý thầy cô giảng viên khoa Vật Lý trường Đại học Sư phạm Thành phố Hồ Chí Minh đã dạy dỗ, truyền đạt kiến thức, kinh nghiệm, sự nhiệt huyết với nghề cho em trong suốt quá trình học tập tại trường. − Thầy ThS. Nguyễn Lê Anh, giảng viên đã trực tiếp hướng dẫn, hỗ trợ, dìu dắt em thực hiện khóa luận tốt nghiệp. Thầy - với kinh nghiệm, sự nhiệt huyết cùng lòng yêu nghề của mình - đã tận tình hướng dẫn, chỉ bảo, giúp đỡ và động viên những lúc em khó khăn; tạo điều kiện thuận lợi cho em được nghiên cứu và phát triển. Hơn bao giờ hết, em cảm nhận được sự quan tâm, dạy dỗ ân cần và tận tâm từ thầy. Cuối cùng, em xin gửi lời cảm ơn của mình đến gia đình, bạn bè đã luôn sát cánh, giúp đỡ, động viên em trong suốt quá trình học tập và hoàn thành khóa luận tốt nghiệp này. Thành phố Hồ Chí Minh, ngày 29 tháng 04 năm 2019 Sinh viên Nguyễn Văn Dũng
  4. DANH MỤC BẢNG BIỂU Bảng 2.1. Các dạng bài tập và kĩ thuật giải tương ứng trong S1 và S2 ................... 63 Bảng 2.2. Số lượng bài tập trong S1 và S2 ............................................................ 63
  5. DANH MỤC HÌNH ẢNH Hình 2.1. Giá trị chỉ số nhiệt [8].............................................................................. 8 Hình 2.2. Mối liên hệ giữa số gia y và vi phân dy [8] ....................................... 13 Hình 2.3. Mối liên hệ giữa số gia z và vi phân dz [8] ......................................... 18 Hình 2.4. Sơ đồ cây [8] ......................................................................................... 25 Hình 2.5. Đường cong  ( x, y ) = 0 . [3] ................................................................. 50 Hình 2.6. Biểu đồ nhiệt độ các Bang ở Hoa Kỳ [8] ............................................... 30 Hình 2.7. Vector đơn vị u .[8] .............................................................................. 31 Hình 2.8. Mặt cong S cắt mặt phẳng thẳng đứng theo hướng vector u . [8] .......... 32 Hình 2.9. Đồ thị của hàm số f có cực trị [8] .......................................................... 40 Hình 2.10. Đồ thị hàm số f ( x, y ) = x − y [8] .................................................... 42 2 2 Hình 2.11. Dốc núi có hình yên ngựa. [8] ............................................................. 43 Hình 2.12. Các dạng tập hợp [8] ........................................................................... 46 Hình 2.13. Đường đồng mức của f ( x, y ) và g ( x, y ) = k [8] ............................. 49 Hình 2.14. Giao tuyến C và các vector gradient tại P [8] ....................................... 53 Hình 2.15. Mặt phẳng tiếp tuyến với S tại P và vector gradient tại P [8] ......... 57 Hình 2.16. Đường tiếp tuyến T1 và T2 với mặt cong tại P [8] ................................ 59 Hình 2.17. Đồ thị hàm số z = 2 x2 + y 2 và mặt phẳng tiếp tuyến (1,1,3) [8] ......... 61 Hình 2.18. Đường đồng mức hàm số z = 2x + y . [8] .......................................... 61 2 2 Hình 3.1. Ý nghĩa đạo hàm riêng .......................................................................... 74 Hình 3.2. Hình tam giác. ....................................................................................... 75 Hình 3.3. Mặt phẳng tiếp tuyến gồm hai đường thẳng tiếp tuyến T1 và T2 ............ 88 Hình 3.4. Đồ thị hàm số z = x 2 + 3 y 2 + 9 và mặt pẳng tuyến tuyến tại điểm ( 2,1, 4 ) .............................................................................................................................. 91 Hình 3.5. Đồ thị hàm số z = x2 + xy + 4 y 2 và mặt phẳng tiếp tuyến tại điểm (1,0,1) .............................................................................................................................. 91 Hình 3.6. Đồ thi hàm số ........................................................................................ 96 Hình 3.7. Đồ thị thể hiện mối liên hệ giữa dy và y ............................................ 99
  6. Hình 3.8. Sơ đồ mạch điện cơ bản....................................................................... 103 Hình 3.9. Sơ đồ cây ............................................................................................ 115 Hình 3.10. Sơ đồ cây........................................................................................... 118 Hình 3.11. Sơ đồ cây........................................................................................... 119 Hình 3.12. Sơ đồ cây........................................................................................... 120 Hình 3.13. Sơ đồ cây........................................................................................... 121 Hình 3.14. Sơ đồ cây........................................................................................... 123 Hình 3.15. Mặt phẳng tiếp tuyến tại P. [8]........................................................... 135 Hình 3.16. Vector đơn vị u = ai + bj . ................................................................. 136 Hình 3.17. Vector gradient và đường đồng mức .................................................. 151 Hình 3.18. Đồ thị hàm số z = cos xy .................................................................... 160 Hình 3.19. Đồ thị hàm số f ( x, y ) = x 2 + y 2 − 2 x − 2 y + 3 ................................... 160 Hình 3.20. Đồ thị hàm số f ( x, y ) = 9 − x 2 − y 2 .................................................. 160 Hình 3.21. Đồ thị hàm số f ( x, y ) = x 2 − y 2 ........................................................ 161 Hình 3.22. Đồ thị hàm số f ( x, y ) = 3x 2 + 6 xy + 7 y 2 − 2 x + 4 y ........................... 162 Hình 3.23. Đồ thị hàm số z = f ( x, y ) = 6 x 2 − 2 x 3 + 3 y 2 + 6 xy ............................ 163 Hình 3.24. Đồ thị hàm số f ( x, y ) = x 3 + 6 xy + y 3 ............................................... 166 Hình 3.25. Đồ thị hàm số z = 2 x5 + y3 + 3 y 2 − 5x2 ............................................... 166 Hình 3.26. Đồ thị hàm số z = xy + x − y ............................................................. 167 Hình 3.27. Ứng dụng khớp hàm .......................................................................... 170 Hình 3.28. Miền xác định D ................................................................................ 174 Hình 3.29. Khoảng cách từ gốc tọa đô ................................................................ 183 Hình 3.30. Khoảng cách từ gốc tọa độ ................................................................ 186 Hình 3.31. Các đường đồng mức ........................................................................ 187 Hình 3.32. Giao tuyến giữa g ( x, y, z ) = 0 và h ( x, y, z ) = 0 ................................ 194
  7. MỤC LỤC PHẦN MỞ ĐẦU .................................................................................................... 1 1. Lý do chọn đề tài................................................................................................ 1 2. Mục đích nghiên cứu ......................................................................................... 2 3. Khách thể và đối tượng nghiên cứu .................................................................. 2 4. Giải thiết khoa học ............................................................................................. 3 5. Giới hạn nghiên cứu .......................................................................................... 3 6. Cấu trúc luận văn .............................................................................................. 3 Chương 1. NHỮNG VẤN ĐỀ NGHIÊN CỨU TRỌNG TÂM ....................... 5 1.1. Giáo trình phân tích ........................................................................... 5 1.2. Câu hỏi nghiên cứu ............................................................................ 5 1.3. Nội dung trong Đề cương chi tiết học phần Giải tích 2 .................... 6 1.4. Cấu trúc nội dung .............................................................................. 6 Chương 2. PHÂN TÍCH VÀ SO SÁNH PHẦN ĐẠO HÀM VÀ VI PHÂN CỦA HÀM NHIỀU BIẾN ..................................................................................... 8 2.1. Phần lý thuyết..................................................................................... 8 2.1.1. Cách tiếp cận khái niệm Đạo hàm và Vi phân của hàm nhiều biến .. 8 2.1.2. Định nghĩa và tính chất Đạo hàm riêng và Vi phân của hàm nhiều biến ............................................................................................................... 13 2.1.3. Các phương pháp tính đạo hàm riêng phân ..................................... 21 2.1.4. Ứng dụng của đạo hàm riêng ............................................................ 30 2.2. Phần bài tập .............................................................................................. 62 2.3. Một vài kết luận ........................................................................................ 64 Chương 3. VIẾT MẪU PHẦN ĐẠO HÀM VÀ VI PHÂN CỦA HÀM NHIỀU BIẾN ....................................................................................................... 67 3.1. Đạo hàm riêng .................................................................................. 68
  8. 3.1.1. Đạo hàm riêng cấp một ...................................................................... 71 3.1.1.1. Định nghĩa ................................................................................... 71 3.1.1.2. Một số kí hiệu của đạo hàm riêng .............................................. 71 3.1.1.3. Quy tắc tìm đạo hàm riêng ......................................................... 72 3.1.1.4. Ý nghĩa đạo hàm riêng cấp một ................................................. 74 3.1.2. Đạo hàm riêng cấp một của hàm số nhiều hơn hai biến................... 76 3.1.3. Đạo hàm cấp cao ................................................................................ 77 3.1.3.1. Định nghĩa ................................................................................... 78 3.1.3.2. Định lý Clairaut .......................................................................... 81 3.1.4. Bài tập................................................................................................. 84 3.2. Khả vi và vi phân ............................................................................. 87 3.2.1. Mặt phẳng tiếp tuyến và phép tính gần đúng tuyến tính ................. 88 3.2.1.1. Mặt phẳng tiếp tuyến .................................................................. 88 3.2.1.2. Phép tính tuyến tính gần đúng ................................................... 92 3.2.2. Khả vi.................................................................................................. 96 3.2.2.1. Định nghĩa ................................................................................... 97 3.2.2.2. Điều kiện đủ khả vi ..................................................................... 98 3.2.2.3. Hệ quả của hàm khả vi ............................................................... 99 3.2.3. Vi phân ............................................................................................... 99 3.2.3.1. Vi phân cấp một .......................................................................... 99 3.2.3.2. Vi phân cấp cao ......................................................................... 104 3.2.4. Hàm ba biến hoặc nhiều hơn ba biến .............................................. 106 3.2.5. Bài tập............................................................................................... 108 3.3. Quy tắc dây chuyền ........................................................................ 113 3.3.1. Quy tắc dây chuyền (Đạo hàm riêng của hàm hợp) ....................... 114
  9. 3.3.1.1. Đạo hàm riêng của hàm hợp hai biến ...................................... 114 3.3.1.2. Đạo hàm riêng hàm hợp tổng quát .......................................... 119 3.3.2. Đạo hàm của hàm ẩn........................................................................ 121 3.3.2.1. Đạo hàm của hàm ẩn một biến ................................................. 121 3.3.2.2. Đạo hàm riêng của hàm ẩn nhiều biến .................................... 123 3.3.2.3. Đạo hàm riêng của hệ hàm ẩn .................................................. 128 3.3.3. Bài tập............................................................................................... 132 3.4. Đạo hàm có hướng và vector gradient .......................................... 135 3.4.1. Đạo hàm theo hướng ........................................................................ 136 3.4.1.1. Định nghĩa ................................................................................. 137 3.4.1.2. Định lý ....................................................................................... 139 3.4.2. Vector Gradient ............................................................................... 143 3.4.2.1. Định nghĩa ................................................................................. 143 3.4.2.2. Tính chất ................................................................................... 145 3.4.2.3. Ứng dụng của Gradient ............................................................ 146 3.4.2.4. Ý nghĩa hình học của vector gradient ...................................... 150 3.4.3. Đối với hàm ba biến ......................................................................... 152 3.4.4. Bài tập............................................................................................... 155 3.5. CỰC TRỊ CỦA HÀM SỐ NHIỀU BIẾN ...................................... 158 3.5.1. Cực trị của hàm hai biến ................................................................. 159 3.5.1.1. Định nghĩa cực trị địa phương của hàm hai biến .................... 159 3.5.1.2. Điều kiện cần để có cực trị........................................................ 161 3.5.1.3. Điều kiện đủ để có cực trị ......................................................... 163 3.5.2. Cực trị tuyệt đối và cực trị tuyệt đối ở vùng đóng hoặc bị chặn .... 173 3.5.3. Cực trị của hàm ba biến................................................................... 176
  10. 3.5.4. Bài tập............................................................................................... 179 3.6. Phương pháp nhân tử lagrange ..................................................... 182 3.6.1. Nhân tử Lagrange với một ràng buộc ............................................. 182 3.6.1.1. Phương pháp nhân tử Lagrange – Điều kiện cần của cực trị có điều kiện ................................................................................................. 185 3.6.1.2. Điều kiện đủ của cực trị có điều kiện ....................................... 185 3.6.2. Nhân tử Lagrange với hai ràng buộc .............................................. 192 3.6.3. Bài tập............................................................................................... 196 KẾT LUẬN VÀ KIẾN NGHỊ ........................................................................... 199 TÀI LIỆU THAM KHẢO ................................................................................. 200
  11. 1 PHẦN MỞ ĐẦU 1. Lý do chọn đề tài Roger Bacon từng dành những lời có cánh cho toán học: “Nếu chúng ta muốn đo tới tính xác thực hiển nhiên và chân lý vô điều kiện trong các khoa học khác, cần phải lấy căn cứ của mọi tri thức từ toán học.”. Thật vậy, từ thời cổ đại, toán học đã bắt đầu hình thành ở nhiều nơi trên thế giới tiêu biểu là ở Hy Lạp cổ đại. Ngày nay, khoa học kĩ thuật ngày càng phát triển, toán học trở nên quan trọng hơn nữa và trở thành một trong những công cụ không thể thiếu để giải quyết các vấn đề thực tiện. Ở thời cổ đại, Pythagoras đã nghĩ ra định lý Pythagoras về liên hệ các cạnh của tam giác vuông để giúp ta tìm ra được các cạnh của một tòa tháp. Tương tự vậy, Newton đã suy nghĩ ra phép vi phân và tích phân giúp ta có thể đưa ra định nghĩa chính xác các khái niệm như vận tốc, gia tốc,... Ở thời nay, toán học giúp chúng ta tìm ra số liệu và cách tối ưu để giải quyết vấn đề, giúp chúng ta xử lý các vấn đề của vật lý, hóa học, sinh học,... Ở cấp độ trung học, học sinh tiếp cận giải tích của hàm một biến một cách tổng quát và chỉ tập trung ở mặt toán học, do đó, ta chưa hiểu được nó thật sự. Ở học kì 1, năm nhất của bậc đại học, học sinh tiếp tục học về giải tích hàm một biến một cách chuyên sâu hơn, biết được nhiều ứng dụng của toán học trong vật lý. Tuy nhiên, các vấn đề sau này giải quyết không phải lúc nào cũng chỉ có một biến số mà đa số là nhiều yếu tố, nhiều biến số chi phối. Do đó, học sinh cần tìm hiểu về hàm nhiều biến số và những ứng dụng của hàm nhiều biến số. Có thể khẳng định giải tích là môn học với những ứng dụng chi phối hầu như các toàn bộ các ngành khoa học – kĩ thuật và kể cả kinh tế. Tất cả các ngành học về khoa học tự nhiên đều gắn liền với giải tích. Vì thế, giải tích là môn bắt buộc đối với các ngành khoa học tự nhiên. Do vậy, ở nước ta nói riêng, nguồn tài liệu tham khảo về bộ môn giải tích ngày càng nhiều, các giáo trình ra đời với nhiều mục đích khác nhau, nhưng đa số các tài liệu này chỉ tập trung cung cấp các công thức toán học, các phương pháp tính toán, các bài tập thuần toán học mà chưa có nhiều ứng dụng đến thực tiễn nói chung và các bài tập vật lý nói riêng. Các giáo trình giải tích nước ngoài có nhiều ứng dụng của giải tích vào trong rất nhiều lĩnh vực và đặc biệt có khá nhiều ứng dụng vào trong vật lý. Tuy nhiên, chúng tôi nhận thấy rằng sinh viên khoa vật lý ít quan tâm đến các tài liệu nước ngoài, hạn chế trong việc trao dồi ngoại ngữ trong quá trình học ở bậc đại học – chỉ 10 tín chỉ chiếm 7,4% chương trình học ở Trường Đại học Sư phạm Thành Phố Hồ Chí Minh.
  12. 2 Đồng thời tiếp nối đề tài nghiên cứu của sinh viên Bùi Quốc Long – sinh viên khoa vật lý khóa 37 Trường Đại học Sư phạm Thành Phố Hồ Chí Minh – đã thực hiện luận văn [6] để nghiên cứu các giáo trình Giải tích hiện tại ảnh hướng đến việc dạy và học của giảng viên cũng như sinh viên khoa vật lý – Trường Đại học Sư phạm Thành Phố Hồ Chí Minh. Trong đó, luận văn [6] đã phân tích giữa các giáo trình giải tích ở các trường đại học có ngành vật lý, như là [3] so sánh với giáo trình nước ngoài [8] để thấy điểm mạnh và điểm yếu. Từ đó, chúng tôi đưa ra cấu trúc để viết mẫu phần Đạo hàm của hàm một biến trong luận văn [6] để minh họa. Để tiếp tục đến mục tiêu hoàn thiện một giáo trình giải tích bằng tiếng Việt với ngôn ngữ dễ hiểu và có các ví dụ về ứng dụng Vật lý cụ thể nhằm tạo thêm tài liệu tham khảo cho sinh viên ngành Vật lý – trường Đại học Sư Phạm Thành Phố Hồ Chí Minh nói riêng, chúng tôi quyết định thực hiện luận văn này dựa trên cấu trúc đã có ở [5,6] để phân tích và so sánh phần Đạo hàm và Vi phân của hàm nhiều biến giữa các giáo trình trong nước [3] và [7] với giáo trình nước ngoài [8] và cuối cùng là viết mẫu phần Đạo hàm và Vi phân của hàm nhiều biến dựa trên những phân tích và so sánh đó. Đồng thời, chúng tôi cũng đưa thêm các bài tập ứng dụng vật lý cụ thể tham khảo từ các tài liệu vật lý [1,2], [4]. 2. Mục đích nghiên cứu Đề tài nhằm hoàn thiện ý tưởng một giáo trình Giải tích bằng tiếng Việt có thể dùng làm tài liệu tham khảo cho sinh viên vật lý – Trường Đại học Sư phạm Thành phố Hồ Chí Minh. Trong luận văn này, chúng tôi chú trọng đến khái niệm Đạo hàm và Vi phân của hàm nhiều biến số: định nghĩa và ứng dụng của nó. Các kết quả cần đạt được trong luận văn này: − Phân tích và so sánh khái niệm Đạo hàm và Vi phân của hàm nhiều biến số giữa các giáo trình [3], [7] với [8] để rút ra những điểm mạnh và điểm yếu của chúng. − Cấu trúc lại để viết phần Đạo hàm và Vi phân của hàm nhiều biến số dựa trên những phân tích và so sánh. 3. Khách thể và đối tượng nghiên cứu − Chương trình Giải tích 2 và Vật lý. − Mối liên hệ và ứng dụng của toán học trong Vật lý.
  13. 3 4. Giả thiết khoa học Nếu luận văn này được hoàn thiện sẽ hỗ trợ cho sinh viên năm nhất khi học về giải tích hàm nhiều biến một cách đầy đủ hơn, đồng thời thấy được ứng dụng cụ thể của toán học trong vật lý, đặc biệt là ở khía cạnh giải tích. 5. Nhiệm vụ nghiên cứu − Tìm hiểu các giáo trình được sử dụng tại khoa vật lý của một số trường đại học có đào tạo ngành vật lý. − Phân tích và so sánh các giáo trình trên với giáo trình nước ngoài [8]. Từ đó, rút ra kết luận để đi đến việc viết phần Đạo hàm và Vi phân cùa hàm số nhiều biến số. 6. Giới hạn nghiên cứu Chúng tôi chỉ nêu ra sự khác nhau của các khái niệm Đạo hàm và Vi phân của hàm nhiều biến số của các giáo trình trong vào ngoài nước. Đồng thời phân tích kiến thức của phần Đạo hàm và Vi phân của hàm nhiều biến số trong các giáo trình trên và tiến hành viết mẫu chương Đạo hàm và Vi phân của hàm nhiều biến số theo mẫu đã có trong [5,6]. Trong luận văn này, chúng tôi không viết về Hàm nhiều biến và Giới hạn và Khai triển Taylor của hàm nhiều biến. 7. Những đóng góp mới của đề tài Trong luận văn này, chúng tôi viết được phần Đạo hàm và Vi phân của hàm nhiều biến số với ngôn ngữ gần gũi và dễ hiểu thông qua những ví dụ và giải thích cụ thể. Chúng tôi chú ý đến nội dung, màu sắc, cách trình bày cùng với hình ảnh làm cho nội dung thêm sinh động hơn. Những thay đổi sẽ được đề cập ở chương 3 của luận văn – Viết mẫu phần Đạo hàm và Vi phân của hàm nhiều biến. 8. Cấu trúc luận văn Ngoài phần mở đầu, kết luận và tài liệu tham khảo, cấu trúc luận văn gồm 3 chương: ❖ Chương 1: Những vấn đề nghiên cứu trọng tâm Nhằm mục đích tìm hiểu vấn đề nghiên cứu một cách có hệ thống, logic và hiệu quả, chúng tôi sẽ đặt ra một số câu hỏi và trả lời các câu hỏi này sau khi phân tích phần Đạo hàm và vi phân của hàm nhiều biến trong Chương 3 của luận văn. ❖ Chương 2: Phân tích và so sánh phần Đạo hàm và Vi phân của hàm nhiều biến. Chúng tôi sẽ sử dụng phương pháp phân tích và so sánh lý thuyết cùng với phương pháp phân loại hệ thống hóa lý thuyết để tìm hiểu sâu sắc về phần Đạo hàm
  14. 4 và Vi phân của hàm nhiều biến được trình bày trong các giáo trình. Từ đó, chúng tôi phân loại và so sánh chúng để tìm ra các kết luận nhằm trả lời các câu hỏi trong Chương 1 của luận văn. ❖ Chương 3: Viết mẫu phần Đạo hàm và Vi phân của hàm nhiều biến. Ở chương này, chúng tôi sử dụng các kết quả phân tích và so sánh ở Chương 2 để tổng hợp các kiến thức vừa phân tích được và đồng thời kết hợp hài hòa giữa ưu điểm và nhược điểm giữa các giáo trình trong và ngoài nước để tiến hành viết phần Đạo hàm và Vi phân của hàm nhiều biến sao cho phù hợp với sinh viên Vật lý nhưng vẫn thỏa mãn các yêu cầu về kỹ thuật tính toán.
  15. 5 Chương 1. NHỮNG VẤN ĐỀ NGHIÊN CỨU TRỌNG TÂM 1.1. Giáo trình phân tích Để thấy rõ điểm giống nhau và tương đồng cũng như là điểm khác nhau giữa các giáo trình trong nước ở một số trường Đại học có đào tạo ngành Vật lý và giáo trình nước ngoài, chúng tôi chọn các giáo trình sau để tiến hành phân tích: − [3] Đỗ Công Khanh (2012), Toán cao cấp – Giải tích hàm nhiều biến, phương trình vi phân, Nhà xuất bản Đại Học Quốc Gia Thành phố Hồ Chí Minh (TP.HCM). Đây là giáo trình sử dụng ở trường Đại học Sư phạm Thành Phố Hồ Chí Minh, Đại học Khoa học Tự Nhiên TP.HCM, Đại học Bách khoa TP.HCM và Đại học Sài Gòn. − [7] Nguyễn Đình Trí (2006), Toán học cao cấp – Tập 3, Nhà xuất bản Giáo dục. Đây là giáo trình được sử dụng ở trường Đại học Sư phạm Thành Phố Hồ Chí Minh. Chúng tôi gọi hai giáo trình [3] và [7] là giáo trình S1. − [8] James Stewart, Calculus, Canada. Chúng tôi gọi giáo trình [8] là giáo trình S2. Chúng tôi chọn S1 và S2 để so sánh vì S1 được sử dụng rộng rãi và phổ biến, đây cũng là giáo trình giải tích 2 chính của rất nhiều trường đã đề cập ở trên. Còn S2 là một giáo trình nổi tiếng ở Mỹ và các nước Châu Âu. 1.2. Câu hỏi nghiên cứu Để phân tích hiệu quả và có logic, chúng tôi đặt ra một số câu hỏi sau mà câu trả lời của nó sẽ làm rõ vấn đề mà chúng tôi nghiên cứu. Chúng tôi đưa ra năm câu hỏi (CH), cụ thể là: CH1: Khái niệm Đạo hàm và Vi phân của hàm nhiều biến được S1 và S2 tiếp cận như thế nào? S1 và S2 có những ví dụ để đi đến định nghĩa Đạo hàm và Vi phân của hàm nhiều biến hay không? CH2: Khái niệm Đạo hàm và Vi phân của hàm nhiều biến được định nghĩa như thế nào? Việc định nghĩa như vậy tác động như thế nào đến việc tiếp thu kiến này? CH3: Các phương pháp tính Đạo hàm và Vi phân của hàm nhiều biến được S1 và S2 trình bày theo hình thức nào? Hình thức 1: Thông báo kiến thức mới rồi đưa ra bài tập ví dụ. Hình thức 2: Đưa ra tình huống có vấn đề rồi xây dựng kiến thức giải quyết.
  16. 6 CH4: Ứng dụng của Đạo hàm và Vi phân của hàm nhiều biến được S1 và S2 trình bày như thế nào? Hệ thống bài tập được xây dựng như thế nào, có đề cập đến các bài tập vật lý hay không? CH5: Cách trình bày về nội dung, hình ảnh, màu sắc được chú trọng hay không? Việc trình bày như vậy tác động như thế nào? 1.3. Nội dung trong Đề cương chi tiết học phần Giải tích 2 Chúng tôi đã dựa theo đề cương chi tiết học phần Giải tích 2 của khoa vật lý Trường Đại học Sư phạm Thành Phố Hồ Chí Minh để phân tích. Với thời lượng 15 tiết, nội dung chi tiết của Đạo hàm và Vi phân của hàm nhiều biến như sau: Chương 1: Hàm nhiều biến 1.1 Đạo hàm riêng. 1.2 Khả vi và vi phân, ứng dụng tính gần đúng. 1.3 Đạo hàm, vi phân của hàm hợp. 1.4 Đạo hàm riêng và vi phân của hàm ẩn. 1.5 Đạo hàm có hướng theo hướng. Gradient. 1.6 Cực trị tự do. 1.7 Cực trị có điều kiện. 1.4. Cấu trúc nội dung Trong phần này, chúng tôi đề cập đến cấu trúc chương Đạo hàm và Vi phân của hàm nhiều biến. Dựa trên cấu trúc đã xây dựng ở luận văn [5,6] để làm nền tảng và có chỉnh sửa để phù hợp hơn. Cấu trúc chương Đạo hàm và Vi phân của hàm nhiều biến gồm Phần mở đầu: chúng tôi nêu lên ý tưởng, đặt vấn đề hoặc nhắc lại các kiến thức đã học để dẫn dắt sinh viên tiếp cận với nội dung kiến thức tốt hơn, kích thích tư duy của người học. Trình bày kiến thức: các kiến thức sẽ được trình bày cụ thể, chi tiết. Trước khi đưa ra định nghĩa, chúng tôi sẽ trình bày phần dẫn dắt và giải quyết một vài trường hợp cụ thể. Bên cạnh đó, các ví dụ phải bao quát, giải chi tiết và giải thích được định nghĩa cũng như tính chất và các ví dụ liên quan đến kiến thức vật lý. Ngoài ra, chúng tôi kèm thêm một vài lưu ý ở các kiến thức hay ví dụ giúp sinh viên không hiểu sai kiến thức và tránh được những lỗi thường gặp. Từ đó, sinh viên sẽ giải các bài tập một cách dễ dàng hơn. Bảng tóm tắt: chúng tôi trình bày lại các nội dung kiến thức một cách cô đọng, dễ nhớ để sinh viên có thể tra cứu lại khi cần thiết.
  17. 7 Hệ thống bài tập:chúng tôi trình bày hệ thống bài tập tự giải. Trong đó, các bài tập về toán học vẫn chiếm đa số tập trung ở những bài tập đầu tiên và bổ sung thêm các bài toán vật lý cụ thể. Các bài toán vật lý chỉ dừng lại ở mức độ vừa phải và đảm bảo được yêu cầu về kiến thức toán học tương ứng.
  18. 8 Chương 2. PHÂN TÍCH VÀ SO SÁNH PHẦN ĐẠO HÀM VÀ VI PHÂN CỦA HÀM NHIỀU BIẾN 2.1. Phần lý thuyết Giáo trình S1 Giáo trình S2 2.1.1. Cách tiếp cận khái niệm Đạo hàm và Vi phân của hàm nhiều biến Cách tiếp cận khái niệm Đạo hàm Cách tiếp cận khái niệm Đạo riêng cấp một hàm riêng cấp một Không có phần nào nói về cách Một ngày nóng, độ ẩm cao làm tiếp cận khái niệm đạo hàm riêng cấp chúng ta cảm thấy nhiệt độ cao hơn nhiệt một của hàm nhiều biến. độ thực, nơi có không khí khô chúng ta cảm nhận nhiệt độ thấp hơn chỉ số của nhiệt kế. The National Weather Service đã nghĩ ra chỉ số nhiệt (còn gọi là chỉ số nhiệt độ - độ ẩm) để miêu tả ảnh hưởng của nhiệt độ và độ ẩm. Chỉ số nhiệt I là nhiệt độ cảm nhận được lúc nhiệt độ thực là T và độ ẩm tương đối là H . Do đó, I là hàm số theo T và H và có thể viết I = f (T , H ) . Hình 2.1 biểu diễn giá trị của I được trích từ bảng hoàn chỉnh từ The National Weather Service. Hình 2.1. Giá trị chỉ số nhiệt [8] Nếu chúng ta tập trung vào cột màu xanh, tương ứng với độ ẩm tương đối là H = 70% , chúng ta xét chỉ số nhiệt như hàm số của một biến T với giá trị cố
  19. 9 định của H . Hãy viết g (T ) = f (T ,70 ) . Khi đó g (T ) miêu tả chỉ số nhiệt I tăng như thế nào khi nhiệt độ thực tăng lúc độ ẩm tương đối là 70% . Đạo hàm của g lúc T = 96o F là tốc độ thay đổi của I đối với T lúc T = 96o F : g ( 96 + h ) − g ( 96 ) g  ( 96 ) = lim h →0 h f ( 96 + h, 70 ) − f ( 96, 70 ) = lim . h →0 h Chúng ta có thể tính gần đúng g  ( 96 ) sử dụng giá trị trong Hình 2.1 bằng cách lấy h = 2 và −2 : g ( 98 ) − g ( 96 ) g  ( 96 )  2 f ( 98, 70 ) − f ( 96, 70 ) = 2 133 − 125 = 2 = 4. g ( 94 ) − g ( 96 ) g  ( 96 )  −2 f ( 94, 70 ) − f ( 96, 70 ) = −2 118 − 125 = −2 = 3,5. Trung bình các giá trị trên, ta có thể kết luận rằng đạo hàm g  ( 96 ) xấp xỉ 3,75 . Có nghĩa là, khi nhiệt độ là 96o F và độ ẩm tương đối là 70% thì nhiệt độ biểu kiến (chỉ số nhiệt) tăng 3,75o F với mỗi độ tăng của nhiệt độ thực. Bây giờ chúng ta hãy quan sát hàng màu xanh, tương ứng với nhiệt độ cố định T = 96o F . Những số trong hàng là
  20. 10 những giá trị của hàm số G ( H ) = f ( 96, H ) , miêu tả chỉ số nhiệt sẽ tăng như thế nào khi độ ẩm tương đối tăng lúc nhiệt độ thực là T = 96o F ? Đạo hàm của hàm số khi H = 70% là tốc độ thay đổi của I đối với H lúc H = 70% G ( 70 + h ) − G ( 70 ) G ( 70 ) = lim h →0 h f ( 96, 70 + h ) − f ( 96, 70 ) = lim . h →0 h Bằng cách lấy h = 5 và −5 , chúng ta tính xấp xỉ G ( 70 ) bằng cách sử dụng giá trị trong Hình 2.1: G ( 75 ) − G ( 70 ) G ( 70 )  5 f ( 96, 75 ) − f ( 96, 70 ) = 5 130 − 125 = 5 = 1. G ( 65 ) − G ( 70 ) G ( 70 )  −5 f ( 96, 65) − f ( 96, 70 ) = −5 121 − 125 = −5 = 0,8. Bằng cách lấy trung bình các giá trị này chúng ta có thể ước lượng G ( 70 )  0,9. Nó nói lên rằng, lúc nhiệt độ là 96o F và độ ẩm tương đối là 70% , chỉ số nhiệt tăng khoảng 0,9o F cho mỗi phần trăm mà độ ẩm tương đối tăng. Trong trường hợp tổng quát, nếu f là hàm số của hai biến x và y , giả sử chúng ta chỉ xét biến x trong khi giữ y
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
9=>0