intTypePromotion=1

Luận văn: HOÀN THIỆN PHƯƠNG PHÁP TÍNH LẶP THEO ĐIỀU KIỆN PROTON KẾT HỢP VỚI PHƢƠNG PHÁP BÌNH PHƯƠNG TỐI THIỂU ĐỂ ĐÁNH GIÁ HẰNG SỐ CÂN BẰNG CỦA CÁC ĐƠN AXIT ĐƠN BAZƠ TỪ DỮ LIỆU pH THỰC NGHIỆM

Chia sẻ: Greengrass304 Greengrass304 | Ngày: | Loại File: PDF | Số trang:92

0
167
lượt xem
34
download

Luận văn: HOÀN THIỆN PHƯƠNG PHÁP TÍNH LẶP THEO ĐIỀU KIỆN PROTON KẾT HỢP VỚI PHƢƠNG PHÁP BÌNH PHƯƠNG TỐI THIỂU ĐỂ ĐÁNH GIÁ HẰNG SỐ CÂN BẰNG CỦA CÁC ĐƠN AXIT ĐƠN BAZƠ TỪ DỮ LIỆU pH THỰC NGHIỆM

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong lĩnh vực nghiên cứu cân bằng ion, việc xác định các tham số cân bằng nói chung và hằng số cân bằng (HSCB) nhiệt động nói riêng là rất cần thiết, bởi vì có biết chính xác các giá trị HSCB thì mới đánh giá chính xác được giá trị pH cũng như thành phần cân bằng của hệ nghiên cứu. Mặt khác, hiện nay trong các tài liệu tra cứu vẫn chưa có sự thống nhất về các giá trị hằng số cân bằng....

Chủ đề:
Lưu

Nội dung Text: Luận văn: HOÀN THIỆN PHƯƠNG PHÁP TÍNH LẶP THEO ĐIỀU KIỆN PROTON KẾT HỢP VỚI PHƢƠNG PHÁP BÌNH PHƯƠNG TỐI THIỂU ĐỂ ĐÁNH GIÁ HẰNG SỐ CÂN BẰNG CỦA CÁC ĐƠN AXIT ĐƠN BAZƠ TỪ DỮ LIỆU pH THỰC NGHIỆM

  1. ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM –––––––––––––––––––––––– PHẠM THỊ THOAN HOÀN THIỆN PHƢƠNG PHÁP TÍNH LẶP THEO ĐIỀU KIỆN PROTON KẾT HỢP VỚI PHƢƠNG PHÁP BÌNH PHƢƠNG TỐI THIỂU ĐỂ ĐÁNH GIÁ HẰNG SỐ CÂN BẰNG CỦA CÁC ĐƠN AXIT ĐƠN BAZƠ TỪ DỮ LIỆU pH THỰC NGHIỆM Chuyên ngành: HOÁ HỌC PHÂN TÍCH Mã số: 60.44.29 LUẬN VĂN THẠC SĨ KHOA HỌC HOÁ HỌC Ngƣời hƣớng dẫn khoa học: PGS.TS ĐÀO THỊ PHƢƠNG DIỆP THÁI NGUYÊN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1
  2. ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM –––––––––––––––––––––––– PHẠM THỊ THOAN HOÀN THIỆN PHƢƠNG PHÁP TÍNH LẶP THEO ĐIỀU KIỆN PROTON KẾT HỢP VỚI PHƢƠNG PHÁP BÌNH PHƢƠNG TỐI THIỂU ĐỂ ĐÁNH GIÁ HẰNG SỐ CÂN BẰNG CỦA CÁC ĐƠN AXIT ĐƠN BAZƠ TỪ DỮ LIỆU pH THỰC NGHIỆM Chuyên ngành: HOÁ HỌC PHÂN TÍCH Mã số: 60.44.29 LUẬN VĂN THẠC SĨ KHOA HỌC HOÁ HỌC Ngƣời hƣớng dẫn khoa học: PGS.TS ĐÀO THỊ PHƢƠNG DIỆP THÁI NGUYÊN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2
  3. LỜI CẢM ƠN Luận văn được hoàn thành tại phòng thí nghiệm Hoá phân tích Trường Đại học Sư phạm 1 Hà Nội. Bằng tấm lòng trân trọng, em xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Đào Thị Phương Diệp - người Thầy đã tận tình hướng dẫn em trong suốt quá trình hoàn thành luận văn. Em xin trân trọng cảm ơn Ban chủ nhiệm khoa Hoá học và các Thầy Cô giáo trong tổ bộ môn Hoá phân tích Trường Đại học Sư phạm 1 Hà Nội đã giúp đỡ và tạo mọi điều kiện thuận lợi cho em trong suốt quá trình làm thực nghiệm. Tôi xin chân thành cảm ơn BGH Trường THPT T ân Y ên 2 Bắc Giang, các đồng nghiệp, bạn bè và người thân đã ủng hộ và động viên tôi hoàn thành luận văn. Thái Nguyên, ngày 15 tháng 9 năm 2009 Phạm Thị Thoan Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 3
  4. MỤC LỤC MỞ ĐẦU ................................................................................................................ 1 Phần I. TỔNG QUAN ........................................................................................... 4 I.1. Cân bằng và hoạt độ ........................................................................................... 4 I.1.1. Định luật tác dụng khối lượng ................................................................... 4 I.1.2. Hoạt độ và hệ số hoạt độ [5] ...................................................................... 6 I.1.2.1. Định nghĩa, ý nghĩa của hoạt độ và hệ số hoạt độ .............................. 6 I.1.2.2. Hệ số hoạt độ của các ion riêng biệt và các phương trình kinh nghiệm đánh giá hệ số hoạt độ của ion [1] ........................................ 7 I.1.3. Phương pháp thực nghiệm đánh giá hệ số hoạt độ ion - Phương pháp Kamar [24] ...............................................................................................11 I.2. Các phương pháp xác định hằng số cân bằng....................................................14 I.2.1. Tính hằng số cân bằng nồng độ βC sau đó ngoại suy về lực ion I=0 để đánh giá hằng số cân bằng nhiệt động βa .................................................14 I.2.2. Phương pháp Kamar đánh giá hằng số phân ly axit [24] ...........................15 I.2.3. Phương pháp đơn hình đánh giá hằng số cân bằng của các đơn axit, đơn bazơ [10,19] .....................................................................................17 I.2.4. Các phương pháp thực nghiệm [7] ...........................................................19 I.2.4.1. Phương pháp đo độ dẫn điện ............................................................20 I.2.4.2. Phương pháp đo điện thế..................................................................20 I.2.4.3. Phương pháp quang học. ..................................................................21 1.2.5. Thuật giải di truyền [4] ...........................................................................22 I.2.6. Phương pháp bình phương tối thiểu ..........................................................23 Phần II. THỰC NGHIỆM ...................................................................................27 II.1. Hóa chất và dụng cụ ........................................................................................27 II.2. Tiến hành thực nghiệm....................................................................................28 II.2.1. Pha chế dung dịch ...................................................................................28 II.2.2. Chuẩn độ thể tích xác định nồng độ các dung dịch ..................................28 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 4
  5. II.2.2.1. Chuẩn hóa dung dịch NaOH ...........................................................28 II.2.2.2. Chuẩn độ xác định nồng độ gốc của dung dịch CH3COOH .............29 II.2.2.3. Chuẩn độ xác định nồng độ gốc của dung dịch HCOOH ................29 II.2.3. Pha chế hỗn hợp các đơn axit CH3COOH và HCOOH............................30 II.2.4. Chuẩn độ điện thế đo pH của hỗn hợp axit axetic và axit fomic bằng NaOH ......31 Phần III. XÁC ĐỊNH HẰNG SỐ CÂN BẰNG CỦA CÁC ĐƠN AXIT TỪ DỮ LIỆU pH ĐO ĐƢỢC BẰNG THỰC NGHIỆM ............................35 III.1. Thuật toán tính lặp hằng số cân bằng axit trong dung dịch các đơn axit, đơn bazơ bất kì theo phương pháp BPPT kết hợp với ĐKP ............................35 III.1.1. Hỗn hợp hai axit yếu .............................................................................41 III.1.2. Hỗn hợp hai đơn bazơ yếu .....................................................................43 III.1.3. Hỗn hợp chứa các axit, bazơ liên hợp ....................................................44 III.2. Kết quả và thảo luận ......................................................................................47 III.2.1. Kết quả tính hằng số phân li của CH3COOH và HCOOH từ pH của hỗn hợp hai axit được đo bằng thực nghiệm ...........................................47 III.2.2. Kết quả tính hằng số phân li của CH3COOH và HCOOH từ giá trị pH trong hỗn hợp hai đơn bazơ yếu đo được bằng thực nghiệm .............50 III.2.3. Kết quả tính hằng số phân li của CH3COOH và HCOOH từ dữ liệu pH của dung dịch gồm một đơn axit yếu (hoặc một đơn bazơ yếu) và một hệ đệm .......51 KẾT LUẬN ...........................................................................................................55 TÀI LIỆU THAM KHẢO ....................................................................................56 A. Tài liệu tiếng việt ...............................................................................................56 B. Tài liệu tiếng Anh ..............................................................................................57 C. Tài lệu tiếng Nga ...............................................................................................57 PHỤ LỤC .............................................................................................................58 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 5
  6. DANH MỤC CÁC TỪ VIẾT TẮT Bình phương tối thiểu BPTT : ĐKP Điều kiện proton : Đ TĐ Điểm tương đương : Hằng số cân bằng HSCB : Lực ion I : Nồng độ cân bằng của cấu tử i [i] : Hoạt độ của ion H+ h : Giá trị pH của dung dịch pH : pH lí thuyết pHLT : pH thực nghiệm pHTN : Thành phần giới hạn TPGH : Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6
  7. DANH MỤC CÁC BẢNG Bảng 1: Kết quả xác định nồng độ dung dịch NaOH, CH3COOH và HCOOH theo phương pháp chuẩn độ thể tích .......................................................29 Bảng 2: Kết quả đo pH của dung dịch gồm axit axetic và axit fomic có nồng độ khác nhau ..........................................................................................30 Bảng 3: Kết quả chuẩn độ điện thế đo pH của 10 dung dịch hỗn hợp gồm hai đơn axit yếu CH3COOH và HCOOH (V hỗn hợp = 25,00 ml) bằng dung dịch bazơ mạnh NaOH ( VNaOH (ml) là thể tích NaOH tiêu thụ) .......31 Bảng 4: Kết quả xác định VTĐ và pHTĐ đối với dung dịch hỗn hợp 2 ..................33 Kết quả xác định pHTĐ ,VTĐ và nồng độ của các bazơ CH3COO- và Bảng 5: HCOO- tại ĐTĐ ......................................................................................34 Bảng 6: Kết quả tính lặp hằng số phân li axit của CH3COOH và HCOOH theo phương pháp BPPT kết hợp với ĐKP từ các giá trị pH đo được bằng thực nghiệm ...................................................................................47 Bảng 7: So sánh kết quả xác định pH của hỗn hợp hai axit CH3COOH và HCOOH bằng thực nghiệm (pHTN) và tính theo lí thuyết (pHLT) ...........48 Bảng 8: So sánh kết quả xác định pKa1 và pKa2 từ pHTN và pHLT .....................49 Bảng 9: Kết quả xác định pKa1 và pKa2 của CH3COOH và HCOOH từ các giá trị pHTĐ của hỗn hợp gồm CH3COO- và HCOO- được nội suy từ các giá trị pH đo bằng thực nghiệm theo phương pháp chuẩn độ điện thế .......... 50 Bảng 10: Kết quả đo pH của dung dịch gồm CH3COOH và hệ đệm HCOOH - HCOO theo phương pháp chuẩn độ điện thế ...........................................51 Bảng 11: Kết quả tính lặp hằng số phân li axit của CH3COOH và HCOOH từ các giá trị pH đo được trong dung dịch hỗn hợp gồm CH3COOH và hệ đệm HCOOH - HCOO-. .....................................................................52 Bảng 12: Kết quả đo pH theo phương pháp chuẩn độ điện thế của dung dịch gồm HCOO- và hệ đệm CH3COOH - CH3COO- .....................................53 Bảng 13: Kết quả tính lặp hằng số phân li axit của CH3COOH và HCOOH từ các giá trị pH đo được trong dung dịch gồm 1 bazơ yếu HCOO- và 1 hệ đệm CH3COOH, CH3COO- .......................................................... 54 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7
  8. MỞ ĐẦU Trong lĩnh vực nghiên cứu cân bằng ion, việc xác định các tham số cân bằng nói chung và hằng số cân bằng (HSCB) nhiệt động nói riêng là rất cần thiết, bởi vì có biết chính xác các giá trị HSCB thì mới đánh giá chính xác được giá trị pH cũng như thành phần cân bằng của hệ nghiên cứu. Mặt khác, hiện nay trong các tài liệu tra cứu vẫn chưa có sự thống nhất về các giá trị hằng số cân bằng. Trong số các HSCB thì HSCB axit - bazơ là đại lượng quan trọng, vì hầu hết các quá trình xảy ra trong dung dịch đều liên quan đến đặc tính axit - bazơ của các chất. Có nhiều phương pháp khác nhau để xác định hằng số cân bằng của các axit- bazơ, nhưng thông thường đều dựa trên kết quả đo pH, hoặc từ giá trị pH đã biết. Trong các tài liệu [18, 22, 23] đã trình bày các phương pháp xác định hằng số cân bằng nhiệt động Ka của các axit riêng lẻ, nhưng chưa đề cập đến việc xác định đồng thời hằng số cân bằng của hỗn hợp nhiều axit, bazơ khác nhau. Để xác định các tham số cân bằng bằng thực nghiệm phải tốn khá nhiều công sức và thời gian, vì ngoài việc chuẩn độ đo pH, người ta còn phải xác định hệ số hoạt độ phân tử ở các lực ion khác nhau. Do đó các giá trị thực nghiệm thu được còn hạn chế, không đáp ứng được nhu cầu tính toán cân bằng. Để khắc phục hạn chế này, trong nhiều năm gần đây đã có một số công trình nghiên cứu lý thuyết kết hợp với ứng dụng công nghệ thông tin vào hóa học phân tích để lập các chương trình tính để đánh giá hằng số cân bằng axit-bazơ. Mở đầu cho hướng nghiên cứu lí thuyết này, tác giả trong [12] bước đầu nghiên cứu khả năng vận dụng phương pháp tính lặp theo điều kiện proton (ĐKP) kết hợp với phương pháp bình phương tối thiểu (BPTT) để đánh giá hằng số phân li axit trong hỗn hợp 2, 3 đơn axit hoặc 2, 3 đơn bazơ đơn giản. Cũng trên cơ sở phương pháp này trong [8] tác giả đã lập chương trình tính đ ể tính theo lí thuyết hằng số tạo phức hiđroxo đơn nhân từng nấc của các ion kim loại trong nước. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1
  9. Để có thể sử dụng một cách hiệu quả nhất việc kết hợp ĐKP và phương pháp BPTT, trong công trình nghiên c ứu của mình [2], tác giả đã tiếp tục khảo sát việc xác định các hằng số phân li axit của các đa axit, đa bazơ từ dữ liệu pH đã biết. Để mở rộng hướng nghiên cứu theo các phương pháp khác nhau, trong các công trình [1] và [10] các tác giả đã sử dụng thuật toán đơn hình để xác định hằng số phân li axit trong các hệ đơn axit, đơn bazơ bất kì. Tiếp theo trong [4] lần đầu tiên tác giả đã khai thác khả năng ứng dụng của thuật giải di truyền để đánh giá hằng số cân bằng trong các hệ axit, bazơ từ dữ liệu pH cho trước. Kết quả tính toán lý thuyết khá phù hợp với các số liệu tra được trong các tài liệu tham khảo tin cậy. Nhưng một điểm chú ý là tất cả các công trình đề cập ở trên đều là các công trình nghiên cứu về mặt phương pháp, tức là thay cho giá trị pH lẽ ra đo bằng thực nghiệm, các tác giả dùng ĐKP để tính giá trị pH theo lý thuyết từ nồng độ ban đầu và các hằng số cân bằng axit- bazơ tra trong tài liệu tham khảo, rồi từ giá trị pH này, sử dụng phương pháp nghiên cứu để tính trở lại các hằng số phân ly axit, bazơ. Riêng trong [2], tác giả bước đầu thử nghiệm, kiểm chứng khả năng sử dụng của phương pháp nghiên cứu, bằng cách tiến hành thực nghiệm đo pH và chuẩn độ đo pH của duy nhất dung dịch axit oxalic. Vấn đề được đặt ra ở đây là phương pháp tính lặp theo điều kiện proton kết hợp với phương pháp bình phương tối thiểu có cho phép xác định được đồng thời các hằng số cân bằng axit trong hỗn hợp các đơn axit, đơn bazơ từ kết quả đo pH thực nghiệm hay không? Mức độ chính xác của kết quả đo pH ảnh hưởng đến kết quả đánh giá HSCB như thế nào? Đây chính là những vấn đề còn tồn tại chưa được giải quyết và cũng chính là nội dung cần hoàn thiện phương pháp nghiên c ứu của luận văn này. Chính vì vậy chúng tôi chọn đề tài: “Hoàn thiện phương pháp tính lặp theo điều kiện proton (ĐKP) kết hợp với phương pháp bình phương tối thiểu (BPTT) để đánh giá hằng số cân bằng (HSCB) của các đơn axit, đơn bazơ từ dữ liệu thực nghiệm đo pH”. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2
  10. Trong khuôn khổ của một luận văn tốt nghiệp, chúng tôi đặt ra các nhiệm vụ như sau: 1.Tổng quan các phương pháp xác định HSCB nhiệt động axit, bazơ. 2. Hoàn thiện phương pháp tính lặp theo điều kiện proton kết hợp với phương pháp bình phương tối thiểu, bằng cách lập các chương trình tính có kể đến lực ion [15,16] để xác định hằng số cân bằng nhiệt động của các đơn axit, đơn bazơ trong dung dịch hỗn hợp các đơn axit, đơn bazơ và trong các hệ đệm. 3. Tiến hành thực nghiệm đo pH và chuẩn độ điện thế đo pH dung dịch hỗn hợp các đơn axit. Từ giá trị pH đo được, đánh giá hằng số cân bằng của các axit trong hỗn hợp. Sự phù hợp giữa giá trị hằng số cân bằng tính được từ dữ liệu thực nghiệm đo pH với giá trị hằng số cân bằng tra trong tài liệu [6] được coi là tiêu chuẩn đánh giá tính đúng đắn của phương pháp nghiên cứu và độ tin cậy của chương trình tính. Để kiểm tra khả năng hội tụ chúng tôi giữ lại ở kết quả tính số chữ số có nghĩa tối đa mà chưa chú ý đến ý nghĩa thực tế của các số liệu. Chương trình tính được viết bằng ngôn ngữ Pascal. Trong các ph ép tính chúng tôi chọn độ hội tụ nghiệm là ε = 1,00.10-9. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 3
  11. Phần I TỔNG QUAN I.1. CÂN BẰNG VÀ HOẠT ĐỘ [9] I.1.1. Định luật tác dụng khối lƣợng Hằng số cân bằng là đại lượng đặc trưng cho trạng thái cân bằng của quá trình thuận nghịch. Ở các điều kiện xác định đối với mỗi phản ứng thuận nghịch hằng số cân bằng K là đại lượng không đổi. Nó không phụ thuộc vào nồng độ các chất phản ứng, mà chỉ thay đổi khi nhiệt độ, bản chất các chất phản ứng và dung môi thay đổi. Thật vậy, giả sử xét cân bằng trong dung dịch: αp+1Ap+1 +….+αsAs (I.1) α1A1 +… + αpAp  Hay viết dưới dạng tổng quát: s  Ai  0; (I.2) i i 1 αi < 0 với i từ 1  p; αi >0 với i từ p+1  s Hóa thế cấu tử i nằm trong dung dịch được biểu thị như sau: µi=μi0+αiRTlnai (I.3) Trong đó: µi là hóa thế hay năng lượng mol riêng phần của cấu tử i khi nhiệt độ, áp suất và số mol các cấu tử khác hằng định. μi0 là thế hóa học của cấu tử i ở trạng thái chuẩn (trạng thái quy ước mà ở đó µi = μi0). ai là hoạt độ của cấu tử i, là hàm số của nồng độ, nhiệt độ, áp suất. Nó liên hệ với nồng độ phân tích nhờ hệ thức: ai = fi.Ci (fi →1 thì Ci → ai) Khi hệ đạt trạng thái cân bằng thì tổng hóa thế của các cấu tử tham gia phản ứng bằng tổng hóa thế các cấu tử là sản phẩm phản ứng: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 4
  12. p s    (I.4) i i i 1 i  p 1 p s  (i0  i RT ln ai )   (   i RT ln ai ) 0 (I.5) i i 1 i  p 1 Qua biến đổi cần thiết ta được:  a App11 ....ass (  Ap1 ...  As )  (  AI ...  Ap ) 0 0 0 0 A e (I.6) RT p 1 a A1 ....a Ap Với điều kiện T, P,…không đổi thì μi0 không đổi và toàn bộ vế phải của (I.6) không đổi. Do đó:  a App11 ....ass (I.7) A K  a11 ....a App A s  (a )i Hay: K  (I.8) i i 1 Hoặc có thể viết dưới dạng:  p1  Ap 1  ... As  s  K  .F ( f ) (I.9) p  AI  ...  Ap  I     f App11 ... f As s F( f )   Vớ i   f AI I ... f App  i >0 với i từ (p+1)  s; Trong đó :  i
  13. Đánh giá chính xác hệ số hoạt độ là điều kiện cần thiết để tính hằng số cân bằng nhiệt động K. Hằng số cân bằng nhiệt động biểu diễn mối liên hệ giữa hoạt độ của các ion tham gia vào cân bằng. Khi sử dụng định luật tác dụng khối lượng, định luật bảo toàn điện tích và các hằng số cân bằng nhiệt động có thể tính toán được những cân bằng trong dung dịch nhưng để tính toán cần phải biết hệ số hoạt độ của từng ion riêng biệt ở các lực ion khác nhau. Tất cả những phương pháp để đánh giá chúng cho đến nay vẫn được xem như là một sự gần đúng. Kết quả của nó được sử dụng đối với lực ion thấp nghĩa là được xem như một dung dịch lý tưởng. Thực tế, hầu hết các hệ là những hệ thực có sai lệch so với hệ lý tưởng, vì thế khi biểu diễn những tính chất nhiệt động của hệ nhất là khi xác định những điều kiện diễn biến của quá trình và điều kiện cân bằng của hệ người ta không thể dùng nồng độ mà nồng độ được thay thế bằng hoạt độ. I.1.2. Hoạt độ và hệ số hoạt độ [5] I.1.2.1. Định nghĩa, ý nghĩa của hoạt độ và hệ số hoạt độ Hệ số hoạt độ là đại lượng cho biết sự sai lệch giữa trạng thái lý tưởng và trạng thái thực của dung dịch nghiên cứu, đồng thời cho phép thực hiện được các phép tính nhiệt động cho hệ thực khi giữ nguyên các phương trình nhiệt động cơ bản dùng cho hệ lí tưởng. Hoạt độ thường được kí hiệu là a và được đo bằng đơn vị dùng để đo nồng độ. Hoạt độ liên hệ với nồng độ C bởi hệ thức: a=f.C, trong đó f là hệ số hoạt độ có dạng nghịch đảo là ), nó xác định mức độ ảnh hưởng của tương tác giữa f= các ion với nhau. Trong dung dịch loãng của chất điện ly yếu, tương tác không đáng kể, hệ số hoạt độ f= 1 và hoạt độ bằng nồng độ (c=a). Hệ số hoạt độ phản ánh lực tương tác tĩnh đi ện giữa các ion trong dung dịch. Vì vậy hệ số hoạt độ không chỉ phụ thuộc vào nồng độ và điện tích của một ion chất điện ly trong dung d ịch mà còn phụ thuộc vào nồng độ và điện tích của mọi ion có trong dung d ịch (bởi vì mọi ion có trong dung d ịch đều tham gia vào tương tác tĩnh đi ện). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6
  14. Sự phụ thuộc của hệ số hoạt độ vào lực ion của dung dịch nước rất loãng của chất điện ly được biểu diễn bằng công thức sau đây của Debye- Huckel [17] : lg i  0.5.Z i2 . I Trong đó: Zi là điện tích của ion i, I là lực ion. Lực ion biểu diễn tương tác của các ion trong dung dịch. [i] là nồng độ của các ion i trong dung dịch, lực ion xác định bằng hệ thức: 1n I   [i]Zi2 2 i 1 Trong các trường hợp khác nhau, hoạt độ thường được chuẩn hóa như sau: - Trong các dung dịch loãng, hoạt độ của các ion và các phần tử đều bằng nồng độ mol của chúng (một cách nghiêm ngặt thì hoạt độ chỉ bằng nồng độ trong dung dịch vô cùng loãng). - Trong các dung dịch loãng, hoạt độ của dung môi bằng phân số mol của dung môi và bằng đơn vị. - Các chất rắn hoặc lỏng nguyên chất nằm cân bằng với dung dịch đều có hoạt độ bằng đơn vị. - Các chất khí nằm cân bằng với dung dịch đều có hoạt độ (hoạt áp) bằng áp suất riêng phẩn của mỗi khí. - Hoạt độ của mỗi cẩu tử trong hỗn hợp chất lỏng gần bằng phân số mol của từng cấu tử. - Chấp nhận hệ số hoạt độ của các phân tử trung hòa điện bằng 1. Vì coi hoạt độ của các phần tử không tích điện bằng nồng độ cân bằng nên sau đây chúng tôi chỉ trình bày các phương pháp kinh nghiệm đánh giá các hệ số hoạt độ của các ion. I.1.2.2. Hệ số hoạt độ của các ion riêng biệt và các phương trình kinh nghiệm đánh giá hệ số hoạt độ của ion [1] Mỗi ion đều có hệ số hoạt độ của từng ion riêng biệt nhưng khái niệm hệ số hoạt độ của từng ion riêng biệt thường được coi là “không có ý nghĩa vật lý”, cho nên chúng ta thường dùng khái niệm hệ số hoạt độ trung bình. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7
  15. Mặc dù vậy, khi giải quyết các bài toán có liên quan tới nghiên cứu cân bằng trong dung dịch, nhiều bài toán của hóa học phân tích, sinh h ọc,… đòi hỏi phải biết giá trị của các hệ số hoạt độ của từng ion riêng bi ệt chứ không phải đại lượng trung bình. Tuy nhiên, trong nhiều trường hợp do không thể hoặc không có điều kiện đo hệ số hoạt độ các ion, người ta phải sử dụng các phương trình gần đúng đánh giá hệ số hoạt độ của chúng. Các phương trình hiện nay gồm có: I.1.2.2.1. Phương trình Debye-Huckel [17] Phương trình định luật tới hạn của Debye - Huckel được áp dụng cho các hệ lực ion thấp ( I < 0.001): lg fi  A.Zi2 . I (I.10) hay lg i  A.Z i2 . I 1 i  Vớ i fi Trong đó: A là hằng số phụ thuộc vào bản chất của dung môi và nhiệt độ. Trong du ng dịch nước ở 250C thì A=0.5115. Lực ion I được tính theo công thức: 1 [i].Zi2 I (I.11) 2i Với lực ion lớn hơn ( 103  I  101 ) thì áp dụng phương trình Debye - Huckel mở rộng: I lg fi   lg i   A.Z i2 . (I.12) 1  B.ai . I Với: ai là bán kính ion hidrat hoá đơn vị là A0. Trong dung dịch nước, ở 250C thì A = 0.5115 và B = 0.3291. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 8
  16. Vậy muốn tính được hằng số cân bằng nhiệt động Ka ta phải tính hằng số cân bằng nồng độ Kc, sau đó ngoại suy về lực ion bằng 0. Đại lượng f i được nhập vào phần ngoại suy theo Debye - Huckel. I.1.2.2.2. Phương trình Davies [15,16] Khi giải quyết các bài toán xác định thành phần cân bằng trong dung dịch, để tính hệ số hoạt độ của các ion, có thể áp dụng phương trình Davies: I  (I.13) lg f   0.5115Z i2   bI  1  I  (I.13) Năm 1938, Davies lấy giá trị trung bình b=0.2. Đến năm 1962, sau những nghiên cứu bổ sung, ông đề nghị dùng giá trị b=0.3. Davies khuyến cáo rằng phương trình chỉ là gần đúng, chỉ nên áp dụng cho những nồng độ chất điện li dưới 0,1M và không nên dùng ở nồng độ cao. Theo Davies thì với b = 0.2 có thể áp dụng phương trình đến lực ion I = 1.5, với b = 0.3 có thể áp dụng phương trình đến lực ion I = 0.8. Trong thực tế, các phương trình với hệ số 0.2 và 0.3 cho kết quả không khác nhau rõ rệt về mặt thống kê, cho nên trong các chương trình tính ở phần sau, chúng tôi dùng phương trình Davies với tham số 0.2. Chúng tôi sử dụng phương trình này vì đây là phương trình tuy gần đúng song đơn giản nhất, không cần đến tính phức tạp như các phương trình khác. I.1.2.2.3. Phương trình BGS [1] I (I.14) lg i   lg fi  AZi2  bI 1  Ba I Năm 1926 Guntelberg đã dùng Ba=1 và áp dụng được để tính hệ số hoạt độ cho các ion điện ly 1:1 cho đến I=0.1. Năm 1935, Bronsted đã bổ sung thêm số hạng thứ hai (b). Sau này Scatch và Guggnheim đã phát triển ý tưởng này trong mô hình BGS: I (I.15) lg i   lg fi  AZ i2  bI 1  1,5 I Giá trị Ba=1.5 đã được dùng cho các ion khác nhau, ở đây coi như tham số c ít phụ thuộc vào lực ion trong khu vực I=0,5÷3,5M. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 9
  17. I.1.2.2.4. Phương trình Danielle [14] Danielle và các tác giả khác đã đề nghị bổ sung thêm số hạng thứ ba: I lg i   lg fi  AZi2  bI  cI 3/2 (với Ba=1) 1 I I lg i   lg fi  AZi2  bI  cI 3/2 (với Ba=1,5) (I.17) 1  1,5 I I.1.2.2.5. Phương trình tổng quát [1] Trong trường hợp tồng quát nhất với lực ion trong khoảng lớn hơn nữa, còn có thể mở rộng thêm số hạng thứ tư I (I.18) lg i   lg fi  AZi2  bI  cI 3/2  d I 5/2 1  Ba I Nhưng trong nhiều trường hợp các đại lượng thứ ba, thứ tư thường ít ảnh hưởng tới sự phụ thuộc của hệ số hoạt độ theo I. Để giảm bớt sai số, tác giả không cố định hằng số Ba. Đây là phương trình tổng quát hơn cả so với các phương trình của các tác giả khác, tuy nhiên có nhược điểm lớn là việc giải ra các hệ số là hết sức phức tạp. I.1.2.2.6. Phương trình Pitzer [20,21] Hệ số hoạt động trung bình γ± được xác định nhờ phương trình Pitzer như sau: A I 2 A 3 ln(1  b I )  mB  m2C  ln      (I.19) 1 b I b 2  là hệ số thẩm thấu được xác định bởi phương trình: Trong đó: A I (I.20)  mB   m2C    1 1 b I  1/2 Là hệ số Debye -Huckel, A  0.3292mol .kg A 1/2 Bγ : được xác định bởi phương trình: 2 1 B    0   (1  (1   I 1/ 2 ) exp( I 1/ 2 ) (I.21)  2I B  được xác định bằng phương trình: B    0   1 .exp( I 1/2 ) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 10
  18.   0 ,  1 và C  là những thông số tương tác ion, chúng là các hàm của nhiệt độ và áp suất. b= 1,2 mol-1/2.kg1/2, α = 2,0 mol-1/2.kg1/2 , m là nồng độ mol, I là lực 1  mi Zi2 . ion, I  2 Hiện nay, phương trình Pitzer hay mẫu tương tác ion Pitzer được sử dụng khá phổ biến để nghiên cứu các tính chất nhiệt động của dung dịch chất điện ly. I.1.3. Phƣơng pháp thực nghiệm đánh giá hệ số ho ạt độ ion - Phƣơng pháp Kamar [24] Phương pháp đánh giá hệ số hoạt độ các ion axit, bazơ Chẳng hạn cần đánh giá hệ số hoạt độ của các ion A- (dạng phân ly của axit HA) hoặc HA+ (dạng proton hóa bazơ A) của các axit HA, người ta chuẩn độ W ml dung dịch HA nồng độ A0 mol/l khi có mặt chất điện li trơ XY (ví dụ NaCl) có nồng độ bằng lực ion cần thiết lập I, bằng Vi ml dung dịch kiềm mạnh XOH hoặc axit mạnh nồng độ X mol/l và muối trơ XY nồng độ ( I - X) mol/l. Ở đây CX+ =CY- (trong dung dịch HA); CX+ = I (trong dung dịch XOH); CY- =(I-X) Với quá trình phân ly ta có: HA + H2O ⇄ H3O+ + A-; (H3 0+ ).(A- ) (H3 0+ ).[A- ] f A f  K* A (I.22) Ka = = . (HA) [HA] f HA f HA 2H2O ⇄ H3O+ + OH− ; Wa = (H+)(OH−) (I.23) H 2 A2 2HA ⇄ H2A2;   (I.24) ( HA) 2 Hoặc với quá trình proton hóa bazơ A ta có: A + H3O+ ⇄ H2O + HA+ ; [HA  ] f f = . HA   * HA  H 3O   [A  ] f A fA 2H2O ⇄ H3O+ + OH− ; Wa = (H+)(OH−) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 11
  19. Từ phương pháp trung hòa điện, sau khi tổ hợp ta có: [H+] = [OH−] + [A−] - [X+] +[Y−] K* HA  I  X Vi wa IVi  hH  .OH _    -pH Vi  w với h=10 ; Vi  w h h Wa XVi h  K *  ( h H  OH   ) Vi + w  HA h Chia cả hai vế cho Ai có: Wa XVi h H  OH   h Vi + w K* h  .  HA Ai Ai Đặt: Wa XVi h H  OH   h Vi + w ni  Ai h Ta có: K *  ni . HA . Ai  (I.25) Mặt khác theo định luật bảo toàn nồng độ ta có: A0 w   HA   A_   2  H 2 A2  Ai    Vi  w Thực tế trong khu vực nồng độ nghiên cứu sự liên hợp của axit HA là vô cùng nhỏ. Do đó: Ai = [HA] +[A−]  Ai =[HA] +aφA (I.26) Theo định luật bảo toàn điện tích, ta có: [H+] - [OH−]+ [X+] - [A−] = 0 wa XVi  h H  OH     A  Vi + w   h Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 12
  20. Mặt khác ta có: a A  Ai .ni , kết hợp với (I.26) ta được: Ai =[HA] + Ai. ni [HA]=(1- ni )Ai. Thay vào (I.14) ta được: h H K*= ni . (I.27) (1  ni ) Kết hợp với (I.22) ta được: h H K.fHA.φA-= ni . (1  ni ) Trong đó : K : là hằng số của phản ứng. φA−: Giá trị nghịch đảo hệ số hoạt độ của ion A−; fHA hệ số hoạt độ của axit HA. h: hoạt độ của ion hidro đo được bằng thực nghiệm đo pH. Ở lực ion xác định, bằng cách đo pH của hỗn hợp chuẩn độ ở các thời điểm khác nhau ta sẽ được một dãy các giá trị trung bình K* = (K.fHA.φA−)I (I.28) Bằng cách ngoại suy K* ở các lực ion khác nhau về lực ion I=0 ta được: K* K  lim K * và sau đó đánh giá (fHA.φA−)I= I 0 K Bằng cách đo trực tiếp fHA của các chất không điện ly (thí dụ bằng phương pháp đo độ tan, đo áp suất hơi, đo hệ số phân bố) ta sẽ đánh giá được f HA A A   f HA Hoặc đánh giá đại lượng tập hợp  I  (i fi ) I ở các lực ion khác nhau, * sau đó ngoại suy từ lực ion I=0 để đánh giá hằng số proton hóa nhiệt động σ của bazơ nghiên cứu sau đó tìm tích: (i fi ) I   I . . Bằng phép đo trực tiếp hệ số 1 * hoạt độ của phần tử không tích điện (fi)I (ví dụ bằng phép đo độ tan, đo áp suất hơi, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 13
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2