intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Năng lượng ( các phản ứng)

Chia sẻ: Nguyen Phuonganh | Ngày: | Loại File: PDF | Số trang:11

109
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Năng lượng tự do và các phản ứng Các định luật thứ nhất và thứ hai có thể kết hợp trong một phương trình chung liên kết những thay đổi trong năng lượng có thể diễn ra trong các phản ứng hoá học và các quá trình khác. ∆G = ∆H - T.∆S ∆G là sự thay đổi trong năng lượng tự do, ∆H là sự thay đổi trong entalpi (enthalpi).

Chủ đề:
Lưu

Nội dung Text: Năng lượng ( các phản ứng)

  1. Năng lượng ( các phản ứng) 16.1.3. Năng lượng tự do và các phản ứng Các định luật thứ nhất và thứ hai có thể kết hợp trong một phương trình chung liên kết những thay đổi trong năng lượng có thể
  2. diễn ra trong các phản ứng hoá học và các quá trình khác. ∆G = ∆H - T.∆S ∆G là sự thay đổi trong năng lượng tự do, ∆H là sự thay đổi trong entalpi (enthalpi).T là nhiệt 0 độ Kelvin ( C + 273) và ∆S là sự thay đổi trong entropi (entropy) diễn ra trong phản ứng. Sự thay đổi trong entalpi là sự thay đổi trong nhiệt lượng. Các phản ứng trong tế bào diễn ra ở điều kiện áp suất và thể tích không thay đổi. Do đó sự thay đổi trong entalpi sẽ tương tự như sự thay đổi trong năng lượng tổng cộng trong phản ứng. Sự thay đổi năng lượng tự do là nhiệt lượng trong một hệ thống có khả năng
  3. sinh công ở nhiệt độ và áp suất không thay đổi. Vì vậy, sự thay đổi trong entropi là đại lượng đo tỉ lệ của sự thay đổi năng lượng tổng cộng mà hệ thống không thể sử dụng để thực hiện công. Sự thay đổi của năng lượng tự do và của entropi không phụ thuộc vào việc hệ thống diễn ra như thế nào từ lúc bắt đầu tới khi kết thúc. Ở nhiệt độ và áp suất không đổi một phản ứng sẽ xảy ra ngẫu nhiên nếu năng lượng tự do của hệ thống giảm đi trong phản ứng, hay nói theo cách khác, nếu ∆G là âm. Từ phương trình trên suy ra là một phản ứng với sự thay đổi lớn, dương tính trong entropi sẽ thường có xu
  4. hướng có giá trị ∆G âm và vì vậy xảy ra ngẫu nhiên. Một sự giảm trong entropi sẽ có xu hướng làm cho ∆G dương tính hơn và phản ứng ít thuận lợi. Hình 16.5: ∆Go’ và cân bằng. o’ Quan hệ của ∆G với sự cân bằng của các phản ứng. (Theo Prescott, Harley và Klein, 2005) Sự thay đổi trong năng lượng tự do có quan hệ xác định, cụ thể đối với hướng của các phản ứng hoá
  5. học. Ta hãy xét phản ứng đơn giản sau đây: A+B C+D Nếu được hỗn hợp các phân tử A và B sẽ kết hợp với nhau tạo thành các sản phẩm C và D. Cuối cùng C và D sẽ trở nên đậm đặc đủ để kết hợp với nhau và tạo thành A và B với cùng tốc độ như khi chúng được tạo thành từ A và B. Phản ứng bây giờ ở trạng thái cân bằng: tốc độ theo hai hướng là như nhau và không có sự thay đổi rõ rệt nào diễn ra trong nồng độ của các chất phản ứng và các sản phẩm. Tình hình trên được mô tả là hằng số cân bằng (Keq) liên kết nồng độ cân
  6. bằng của các sản phẩm và cơ chất với nhau: Nếu hằng số cân bằng lớn hơn 1 các sản phẩm sẽ có nồng độ lớn hơn các chất phản ứng và phản ứng có xu hướng diễn ra đến cùng (Hình 16.5). Hằng số cân bằng của một phản ứng liên quan trực tiếp với sự thay đổi trong năng lượng tự do của phản ứng. Khi được xác định ở các điều kiện tiêu chuẩn quy định chặt chẽ về nồng độ, áp suất, pH và nhiệt độ thì sự thay đổi năng lượng tự do cho một quá trình được gọi là sự thay đổi năng lượng tự do tiêu
  7. chuẩn (∆Go). Nếu giữ ở pH 7,0 (gần với pH của tế bào sống) sự thay đổi năng lượng tự do tiêu chuẩn sẽ được chỉ bởi ký hiệu ∆Go’. Sự thay đồi trong năng lượng tự do tiêu chuẩn có thể được xem là lượng năng lượng cực đại mà hệ thống có thể thực hiện công hữu ích ở các điều kiện tiêu chuẩn. Việc sử dụng các giá trị ∆Go’ cho phép ta so sánh các phản ứng mà không cần quan tâm tới những thay đổi trong ∆G, do những sai khác trong các điều kiện môi trường. Quan hệ giữa ∆Go’ và Keq được thể hiện qua quá trình sau: ∆Go’ = -2,303RTlgKeq.
  8. R là hằng số khí (1,9872 cal/mol hoặc 8,3145 J/mol) và T là nhiệt độ tuyệt đối. Từ phương trình trên rút ra khi ∆Go’ âm hằng số cân bằng sẽ lớn hơn 1, phản ứng sẽ diễn ra đến cùng và được gọi là phản ứng thoát nhiệt (Hình 16.5). Trong một phản ứng thu nhiệt ∆Go’ là dương và hằng số cân bằng nhỏ hơn 1. Điều đó có nghĩa là phản ứng không thuận lợi và ít sản phẩm được tạo thành ở các điều kiện tiêu chuẩn. Cần nhớ rằng giá trị ∆Go’ chỉ cho ta biết phản ứng nằm ở đâu khi cân bằng chứ không nói lên phản ứng đạt được cân bằng nhanh chậm ra sao.
  9. 16.1.4. Vai trò của ATP trong trao đổi chất Nhiều phản ứng trong tế bào là thu nhiệt, khó diễn ra hoàn toàn nếu không có sự giúp đỡ từ bên ngoài. Một trong các vai trò của ATP là hướng các phản ứng nói trên xảy ra được triệt để hơn. ATP là một phân tử cao năng nghĩa là nó có thể bị thuỷ phân hầu như hoàn toàn thành o’ ADP và Pi với một ∆G khoảng - 7,3kcal/mol. ATP + H2O ADP + Pi Với ATP thuật ngữ phân tử cao năng không có nghĩa là một lượng lớn năng lượng được dự trữ bên
  10. trong một liên kết đặc biệt của ATP mà chỉ đơn giản chỉ ra rằng việc loại bỏ nhánh Phosphate tận cùng diễn ra với sự thay đổi năng lượng tự do chuẩn là âm, lớn hoặc phản ứng là thoát nhiệt mạnh. Nói cách khác ATP có thế mạnh chuyền nhóm Phosphate và dễ dàng chuyền Phosphate cho nước. Thế chuyền nhóm Phosphate được quy định là o’ âm của ∆G đối với việc loại bỏ thuỷ phân Phosphate. Một phân tử có thế chuyền nhóm cao hơn sẽ chuyển Phosphate cho phân tử có thế thấp hơn. Như vậy ATP thích hợp khá lý tưởng đối với vai trò là đồng tiền năng lượng. ATP được tạo thành
  11. trong các quá trình hấp thu và sản sinh năng lượng như quang hợp, lên men và hô hấp hiếu khí. Đứng về kinh tế của tế bào sự phân giải ATP thải nhiệt liên kết với các phản ứng thu nhiệt khác nhau giúp cho các phản ứng này được hoàn thành (Hình 16.6). Nói cách khác ATP liên kết các phản ứng sinh năng lượng với các phản ứng sử dụng năng lượng.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2