intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Ôn tập vật lý

Chia sẻ: Cuncon2211 Cuncon2211 | Ngày: | Loại File: PDF | Số trang:6

40
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài1 .Do tổng ngoại lực tác dụng hệ kín theo phương ngang nên khối tâm của hệ đứng yên và tổng động lượng của hệ được bảo toàn. Chọn trục Ox có phương ngang hướng sang phải, góc O ở khối tâm của hệ.

Chủ đề:
Lưu

Nội dung Text: Ôn tập vật lý

  1. SỞ GD&ĐT NGHỆ AN K Ỳ THI CHỌN ĐỘI TUY ỂN DỰ THI HSG QUỐC GIA LỚP 12 ---------------------- Năm học 2007 - 2008 HƯỚNG DẪ N CHẤ M, ĐÁP ÁN VÀ BIỂU ĐIỂM CH ẤM ĐỀ CHÍNH THỨC Môn: VẬT LÝ Ngày thi: 07/11/2007 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Nội dung Điểm .Do tổng ngoại lực tác dụng hệ kín theo phương ngang 1đ Bài1 E nên khối tâm củ a hệ đứng yên và tổng động lượng của hệ m1,q K m2, - q được b ảo toàn. Chọn trụ c Ox có phương ngang hư ớng . x sang phải, góc O ở khối tâm của hệ. Ta có: o m1v1 m1v1 + m2v2 = o  v2 = - (1) m2 .Vật m1 và m2 sẽ d ao động điều hòa xung quanh vị trí cân b ằng củ a chúng, tại đó hợp lực 1đ tác dụ ng lên mỗ i vật bằng 0 và vận tố c củ a chúng đạt cực đ ại. Ta có: 1đ q E = k(x1-x2) (2) 2 m1v12 m2v2 k ( x1  x2 ) 2 = qE(x1-x2) (3) + + 2 2 2 .Từ (1) và (2) và (3) ta được: 1đ qE m1 qE m2 V1= , V2= m1 (m1  m2 ) m2 ( m1  m2 ) k k 1.Gọ i M và m lần lượt là khố i lượng Trái Đất và vệ tinh. 0,5đ Bài 2 .Lực hấp dẫn củ a Trái Đất lên vệ tinh đóng vai trò lực hướng tâm nên: 2 GMm mv0 GM V1  V0=  = =4,56m/s 2 R R 3R0 3 0,5đ 2R .Chu kỳ quay của vệ tinh: T0 = =26442s = 7,43h V0 2.Từ hai phương trình cho ở đ ề bài ta được phương trình: 0,5đ
  2. d 2 r ( c / m) 2 GM - = - 2 (1) 2 3 dt r r 0,5đ c .Khi vệ tinh chuyển động vớ i b án kính R thì: ( ) 2 = GMR (2) m d 2 r GMR GM .Từ (1) và (2), ta được: - 3 = 2 với r =R+x . dt 2 r r d 2x GMR GM .Hay: =  2 x3 x dt R 3 (1  ) R 2 (1  ) 2 R R .Do vệ tinh chỉ d ao động bé nên x
  3. 0,5đ U AC  e 2 + U AC  2e 2 .Thay (1), (2) vào (3) ta được: P = R 2R 0,5đ 4e .Lấy đạo hàm hai vế củ a P theo UAC ta được : P’= 0  UAC= 3 .Lập bảng biến thiên biểu diễn sự p hụ thuộc củ a P theo UAC ta thấ y UAC đạt cực tiểu khi e2 4e , lúc đó Pmin= UAC= . 3R 3 0,5đ e 2e .Thay UAC vào (2) và (3) ta được: UAC = và UNB = 3 3 e e U NB U  ICD= 0 AM   .Từ đó tìm được: I1= I2= 2R 3R 3R R1 4e U AB U AC x =  R I3= 3R R3 I3 0,5đ 3e2 .Biện luận: -Khi x= 0 thì UAC= 0 và P = . R e2 . 4e và P min = -Khi x = R thì UAC= 3 3R 11e2 -Khi x = 3R thì UAC=4e và P max = . R 2.Coi phần mạch điện giữa A và D tương ứng với nguồn 1đ E1 điện có su ất điện độ ng E và điện trở trong r, mạch được vẽ M D lại như hình bên. .Khi nố i Ampe kế vào A và D thì: R1 E,r 4e e + e E 3e (1) =  I1= = R Rr r R .Nối Ampe kế vào A và M thì R1 bị nố i tắt: A Ee 3e (2) I2 = = 2R r 0,5đ 2R .Giải hệ (1) và (2) ta được: E = 2e , r = 3 .Khi không có Ampe kế thì cường đ ộ dòng điện qua R1 là: E  e = 3e = 0,6 e (A) IR1 = 5R R R1  r . Sau khi đóng khóa, gọi cường độ trong mạch là i và điện tích của tụ đ iện là q. 0,5đ Bài 4
  4. q q  cU . Hay q ’’+ .Định luật ôm cho mạch: U – Ldi’= = 0 (1) c cLd .Đặt q 1 = q-cU, ta được phương trình: q 1’’+  2 q1 = 0 . .Nghiệm củ a phương trình là: q1 = Asin( t ) + Bcos( t ) (2) .Chọn t = 0 là thời điểm đóng khóa K, ta có: 0,5đ ’ ’ q 1(t= 0) = q (t=o)– cU = cU, q1 = q = 0 .Suy ra : A = 0 , B = - cU, q = cU[1 - cos( t )] (3) .Cường đ ộ trong cu ộn dây là: id = q’= cU  Sin( t )  id ~ U 0,5đ , .Đối với vòng siêu dẫn:  = -Lvi,v (4) .Ở đ ây  là từ thông do cảm ứng từ xolenoit gửi qua vòng, iv là cường độ dòng điện chạ y qua vòng, LV là độ tự cảm của vòng. 0,5đ .Nghiệm củ a (4) có d ạng:  + Lviv = C với C là hằng số . .Tại thời điểm ban đ ầu C = 0 nên: iv = -  LV 0,5đ .Từ thông  tỷ lệ với đ ộ tự cảm củ a solenoit (độ tự cảm này t ỷ lệ id) và diện tích vòng: D 2U  ~ idD2 ~ UD2  i v ~ Lv .Lực Ampe cực đại tác dụ ng lên vòng theo hướng thẳng đ ứng lên trên, tỷ lệ với đường 0,5đ kính của vòng, cường độ dòng điện trong vòng và trong solenoit. D 3U 2 F ~ Didiv ~ Lv .Vòng sẽ nả y lên nếu lực F lớn hơn trọ ng lực của vòng, trọ ng lực này t ỷ lệ với Dd 2. 0,5đ D3U 2 d ~ Dd2  U ~ .Trong trường hợp giới hạn: LV D Lv .Trường hợp đầu : U0 ~ d1{Ln(1,4D/d 1)} 1 / 2 0,5đ .Trường hợp sau : U’0 ~ d2{Ln(1,4D/d 2)} 1 / 2 .Vòng sẽ nả y lên khi hiệu điện thế của ngu ồn thỏa mãn: U’0  U0 d2{Ln(1,4D/d2)} 1 / 2 / d1{Ln(1,4D/d1)} 1 / 2 1.Giản đồ véc tơ được vẽ như hình bên. 1đ Bài 5 A UAB B .Từ giản đồ suy ra UMN cực tiểu khi M trùng với N . UR1 UR2 UC UL .Hay: UMN= 0  UR1 = UC  I1R1 = I2ZC , UR2 = UL N M
  5.  = I2R2= I1ZL 0,5đ R R 100 100 3 R1 Z = C  ZC = 1 2 =   C=  F = 55( F )  ZL R2 ZL 3 2.Chập M và N thành điểm E.Tổ ng trở, độ lệch pha giữa hiệu điện thế và cường đ ộ dòng 1đ điện trong mỗi nhánh : UEB 2 I A IC IL I 1 IR1 U AE 1  1 1 1 R I  2  2  Z1 = 50 3 ( ) .Tg 1 = - C = - 1 = -  1 = - 2 6 I R1 Z1 R1 Z C ZC 3 1  I R 1 1 1  2  2  Z2 = 50 3 ( ) . Tg  2 = L = 2 =  2 = 2 6 Z 2 R2 Z L IR2 ZL 3 .Vì Z1 = Z2 và cường độ hiệu dụng trong mạch chính như nhau nên: UAE = UEB = U 0,5đ  .Mặt khác U AE và U EB đều lệch về hai phía trụ c I một góc nên: 6 U AB UAE = UEB = = 60 3 (V) :  2 cos( ) 6 .Chọn chiều dương qua các nhánh như hình vẽ. 1đ .Giản đồ véc tơ biểu diễn I R1  I A  I L như hình R1 M L A B bên. A R2 C N .Từ đó ta được: 300  I 2 R1  I L  2 I R1 I L cos 2 IA= = 0 ,6(A) 600 6 IR1 IL IA
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2