’<br />
Tap ch´ Tin hoc v` Diˆu khiˆn hoc, T.23, S.2 (2007), 164–178<br />
ı<br />
e<br />
e<br />
.<br />
. a `<br />
.<br />
<br />
. ’ . ˜. ˆ<br />
ˆ<br />
˜. ˆ<br />
ˆ<br />
PHU THUOC DU LIEU TRONG CO SO DU LIEU QUAN HE<br />
.<br />
.<br />
.<br />
.<br />
.<br />
ˆ<br />
ˆ<br />
˜<br />
´.I THONG TIN NGON NGU.<br />
VO<br />
˜<br />
ˆ<br />
˘<br />
NGUYEN VAN LONG<br />
<br />
Khoa Cˆng nghˆ Thˆng tin, Dai hoc Giao thˆng Vˆn tai H` Nˆi<br />
o<br />
e<br />
o<br />
o<br />
a ’ a o<br />
.<br />
. .<br />
.<br />
.<br />
Abstract. Relational databases with linguistic data based on hedge algebras - based semantics<br />
were introduced and investigated in [3], in which the evaluation of queries containing linguistic data<br />
was transformed into that of traditional queries. On this new viewpoint, in the present paper a<br />
notion of “fuzzy” functional dependencies in these databases will be defined reasonably. These new<br />
dependencies will be examined in the context of traditional functional dependencies, which play as<br />
syntaxtical constraints of the databases under consideration. Relationship between these two kinds<br />
of such dependencies will also be considered.<br />
´<br />
´ .<br />
´<br />
’ a<br />
T´m t˘t. CSDL ngˆn ng˜. v´.i ng˜. ngh˜ du.a trˆn c´ch tiˆp cˆn dai sˆ gia tu. d˜ du.o.c nghiˆn c´.u<br />
o<br />
a<br />
o<br />
u o<br />
e a<br />
e a<br />
e u<br />
u<br />
ıa .<br />
.<br />
. o<br />
.o.ng gi´ c´c truy vˆ n liˆn quan dˆn thˆng tin ngˆn ng˜. du.o.c du.a vˆ viˆc<br />
´<br />
´ e<br />
` e<br />
o e<br />
e<br />
o<br />
o<br />
u<br />
trong [3], trong d´ viˆc lu .<br />
a a<br />
a<br />
e .<br />
.<br />
.<br />
.o.ng gi´ kinh diˆn. Trˆn co. so. d´, phu thuˆc h`m m`. trong CSDL ngˆn ng˜. s˜ du.o.c dinh<br />
’<br />
’ o<br />
a<br />
o<br />
u e<br />
e<br />
e<br />
o a<br />
o<br />
thao t´c lu .<br />
a<br />
. .<br />
.<br />
.<br />
’<br />
’ u u<br />
e a o a<br />
o<br />
u ’<br />
o<br />
o a<br />
ngh˜ v` nghiˆn c´.u trong ng˜. canh v´.i phu thuˆc h`m kinh diˆn v` c´ r`ng buˆc CSDL o. m´.c c´<br />
ıa a<br />
e u<br />
.<br />
.<br />
.<br />
´i quan hˆ gi˜.a hai loai phu thuˆc n`y c˜ ng du.o.c xem x´t.<br />
e<br />
o a u<br />
ph´p. Mˆ<br />
a<br />
o<br />
e u<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
’. A<br />
ˆ<br />
1. MO D` U<br />
´<br />
’ u e<br />
Co. so. d˜. liˆu (CSDL) quan hˆ m`. d˜ du.o.c nghiˆn c´.u ph´t triˆ n t`. cuˆi nh˜.ng n˘m 70<br />
e o a<br />
e u<br />
a<br />
e’ u o<br />
u<br />
a<br />
.<br />
.<br />
.<br />
. d´ d˜ du.o.c u.ng dung ([1, 2, 17, 21, 22]) dˆ giai quyˆt c´c b`i to´n thu.c tiˆn<br />
˜<br />
´<br />
´<br />
e<br />
thˆ ky XX v` t` o a<br />
e’ ’<br />
a u<br />
e’ ’<br />
e a a a<br />
.<br />
.<br />
.<br />
.`.ng thˆng tin m`., khˆng ch˘c ch˘n. Nh˜.ng u.ng dung hˆ thˆng CSDL trong<br />
´<br />
´<br />
´<br />
trong mˆi tru o<br />
o<br />
o<br />
o<br />
o<br />
a<br />
a<br />
u ´<br />
e o<br />
.<br />
.<br />
˜<br />
´<br />
´<br />
´<br />
e<br />
e a o<br />
o<br />
a<br />
u<br />
o<br />
o<br />
a<br />
a<br />
a<br />
ı a<br />
e<br />
thu.c tiˆn kinh tˆ, x˜ hˆi thu.`.ng g˘p nh˜.ng thˆng tin khˆng ch˘c ch˘n nhu. vˆy. V` vˆy, viˆc<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.u c´c CSDL v´.i thˆng tin m`., khˆng ch˘c ch˘n, khˆng ch´ x´c s˜ c´ nh˜.ng u.ng<br />
´<br />
´<br />
o<br />
o<br />
o<br />
o<br />
a<br />
a<br />
o<br />
ınh a e o u ´<br />
nghiˆn c´ a<br />
e u<br />
´<br />
dung thiˆt thu.c.<br />
e<br />
.<br />
.<br />
. hiˆn diˆn c´c thˆng tin m`., khˆng ch˘c ch˘n trong CSDL, tˆ t nhiˆn s˜ l`m thay dˆ i<br />
’<br />
´<br />
´<br />
´<br />
Su e<br />
e a<br />
o<br />
o<br />
o<br />
a<br />
a<br />
a<br />
e e a<br />
o<br />
. .<br />
.<br />
. liˆu ca trong pham vi c´ ph´p (thao t´c trˆn k´ hiˆu) v` trong pham<br />
u a<br />
a e y e<br />
a<br />
c˘n ban viˆc thao t´c d˜ e ’<br />
a ’<br />
e<br />
a u .<br />
.<br />
.<br />
.<br />
.<br />
´<br />
` a<br />
’ a a a<br />
ıa.<br />
e<br />
e’<br />
e ’ a a<br />
o<br />
o<br />
e<br />
vi ng˜. ngh˜ Tuy nhiˆn, theo su. hiˆ u biˆt cua c´c t´c gia b`i b´o n`y, khˆng c´ nhiˆu c´c<br />
u<br />
.<br />
´<br />
´<br />
’<br />
cˆng tr` nghiˆn c´.u dˆ cˆp dˆn nh˜.ng su. kh´c biˆt sˆu s˘c trong pham vi c´ ph´p cua<br />
o<br />
ınh<br />
e u ` a e<br />
e .<br />
u<br />
a<br />
e a a<br />
u<br />
a<br />
.<br />
.<br />
.<br />
. so v´.i CSDL kinh diˆ n. Phˆn l´.n c´c nghiˆn c´.u c´c phu thuˆc d˜. liˆu (PTDL)<br />
` o a<br />
e’<br />
a<br />
o<br />
e u a<br />
o u e<br />
CSDL m`<br />
o<br />
.<br />
.<br />
.<br />
˜<br />
’ a<br />
trong CSDL m`. dˆu l` su. mo. rˆng cua c´c PTDL kinh diˆ n, ngh˜ l` c´c PTDL d´ vˆn d´ng<br />
o ` a . ’ o<br />
e<br />
e’<br />
ıa a a<br />
o a u<br />
.<br />
` a .<br />
´<br />
u<br />
o<br />
a<br />
e<br />
o o<br />
khi c´c d˜. liˆu trong CSDL dˆu l` thu.c. Trong nh˜.ng tru.`.ng ho.p nhu. vˆy, dˆi v´.i CSDL<br />
a u e<br />
.<br />
.<br />
.<br />
’ o<br />
’<br />
u<br />
u a ’ o a<br />
a<br />
m`., ch´ng ta d˜ khˆng mo. rˆng du.o.c c´ ph´p cua l´.p c´c PTDL, v` do d´ khˆng anh hu.o.ng<br />
o<br />
a o<br />
o o ’<br />
.<br />
.<br />
´<br />
´ ´<br />
’ ’ o<br />
u<br />
ıa<br />
a<br />
e u<br />
ıa<br />
dˆn viˆc thiˆt kˆ CSDL. Khi d´, ta chı mo. rˆng du.o.c ng˜. ngh˜ hay c´c quan hˆ ng˜. ngh˜<br />
e<br />
e<br />
e e<br />
o<br />
.<br />
.<br />
.<br />
.<br />
. liˆu dˆ cho ph´p khai th´c d˜. liˆu trong CSDL m`..<br />
’ a u .<br />
cua c´c d˜ e e’<br />
e<br />
a u e<br />
o<br />
.<br />
. nh˜.ng u.u viˆt cua cˆ u tr´c dai sˆ gia tu. (DSGT) ([4–16, 18, 19]), trong [3] d˜ du.a ra<br />
´<br />
´ u . o<br />
’<br />
a<br />
e ’ a<br />
Nh` u<br />
o<br />
.<br />
´<br />
´ .<br />
’<br />
’<br />
o<br />
o u<br />
v` nghiˆn c´.u CSDL m`. du.a trˆn c´ch tiˆp cˆn cua dai sˆ gia tu., trong d´ ng˜. ngh˜ ngˆn<br />
a<br />
e u<br />
o .<br />
e a<br />
e a<br />
ıa o<br />
.<br />
<br />
. ’ . ˜. ˆ<br />
ˆ<br />
˜. ˆ<br />
ˆ<br />
PHU THUOC DU LIEU TRONG CO SO DU LIEU QUAN HE<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
165<br />
<br />
´ .<br />
’<br />
ng˜. du.o.c lu.o.ng h´a b˘ ng c´c ´nh xa dinh lu.o.ng cua DSGT. Theo c´ch tiˆp cˆn n`y, gi´<br />
u<br />
o `<br />
a<br />
a a<br />
a<br />
e a a<br />
a<br />
.<br />
.<br />
. .<br />
.<br />
. l` d˜. liˆu, khˆng phai l` nh˜n cua c´c tˆp m`. biˆ u diˆn ng˜. ngh˜ cua gi´ tri<br />
˜<br />
’ a a<br />
’ a a<br />
o<br />
o e’<br />
e<br />
u<br />
ıa ’<br />
a .<br />
tri ngˆn ng˜ a u e<br />
o<br />
u<br />
.<br />
.<br />
.<br />
´<br />
’<br />
’ o a<br />
e ım e<br />
ıa ’<br />
o<br />
ngˆn ng˜. v` u.u diˆ m co. ban cua n´ l` cho ph´p t` kiˆm, d´nh gi´ ng˜. ngh˜ cua thˆng tin<br />
o<br />
u a<br />
e’<br />
a<br />
a u<br />
. liˆu kinh diˆ n thu.`.ng d`ng v` do d´ bao dam t´<br />
´<br />
´<br />
’<br />
’ `<br />
o<br />
u<br />
a<br />
e’<br />
o ’<br />
ınh<br />
khˆng ch˘c ch˘n chı b˘ ng c´c thao t´c d˜ e<br />
o<br />
a<br />
a<br />
a<br />
a<br />
a u .<br />
’u d˜. liˆu trong xu. l´ ng˜. ngh˜ cua ch´ng. Diˆu n`y kh´c v´.i CSDL m`.<br />
`<br />
`<br />
´<br />
’ y u<br />
e a<br />
a o<br />
thuˆn nhˆ t cua kiˆ u e<br />
a<br />
a ’<br />
e<br />
ıa ’<br />
u<br />
o<br />
.<br />
˜<br />
’ ’ y u<br />
’ ’ y u<br />
e’<br />
u<br />
ıa<br />
ıa<br />
e’<br />
e<br />
o .<br />
l` v`.a phai xu. l´ ng˜. ngh˜ kinh diˆ n, v`.a phai xu. l´ ng˜. ngh˜ du.o.c biˆ u diˆn du.´.i dang<br />
a u<br />
.<br />
´ .<br />
’<br />
u<br />
a<br />
o ’<br />
u<br />
a<br />
e a<br />
ıa o<br />
u<br />
c´c tˆp m`. hay h`m thuˆc cua ch´ng. Theo c´ch tiˆp cˆn cua DSGT, ng˜. ngh˜ ngˆn ng˜.<br />
a a<br />
o<br />
.<br />
.<br />
`<br />
’ o<br />
’<br />
a .<br />
a<br />
c´ thˆ biˆ u thi b˘ ng mˆt lˆn cˆn c´c khoang du.o.c x´c dinh bo.i dˆ do t´ m`. cua c´c gi´<br />
o e’ e’<br />
a<br />
o a a a<br />
ınh o ’ a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. cua mˆt thuˆc t´ v´.i vai tr` l` biˆn ngˆn ng˜.. V´ du, ng˜. ngh˜ cua gi´ tri<br />
´<br />
o<br />
o ınh o<br />
o a e<br />
o<br />
u<br />
ı .<br />
u<br />
ıa ’<br />
a .<br />
tri ngˆn ng˜ ’<br />
u<br />
.<br />
.<br />
. o<br />
´<br />
´<br />
’<br />
a o<br />
o ınh o a e .<br />
ı o<br />
a e<br />
e’<br />
ngˆn ng˜. (GTNNg) rˆ t l´.n cua thuˆc t´ “Sˆ b`i trˆn tap ch´ nu.´.c ngo`i” s˜ du.o.c biˆ u thi<br />
o<br />
u<br />
.<br />
.<br />
.<br />
`<br />
´<br />
’<br />
’<br />
b˘ ng nh˜.ng khoang lˆn cˆn cua gi´ tri dai diˆn cua GTNNg rˆ t l´.n thˆng qua ´nh xa dinh<br />
a<br />
u<br />
e<br />
a o<br />
a a ’<br />
a . .<br />
o<br />
a<br />
.<br />
.<br />
. .<br />
´<br />
’<br />
’<br />
lu.o.ng cua DSGT cua thuˆc t´ “Sˆ b`i trˆn tap ch´ nu.´.c ngo`i”. Theo ngh˜ d´, trong [3]<br />
a<br />
ıa o<br />
o ınh o a e .<br />
ı o<br />
.<br />
.<br />
a<br />
u<br />
o<br />
u<br />
a<br />
u<br />
o<br />
d˜ su. dung thuˆt ng˜. CSDL ngˆn ng˜. thay cho thuˆt ng˜. CSDL m`..<br />
a ’ .<br />
.<br />
.<br />
.u c´c PTDL m`. trong CSDL ngˆn ng˜. trˆn ca hai kh´ canh c´<br />
B`i b´o n`y s˜ nghiˆn c´ a<br />
a a a e<br />
e u<br />
o<br />
o<br />
u e ’<br />
ıa .<br />
u<br />
. ngh˜ (semantics). Ta s˜ thˆ y trong CSDL ngˆn ng˜. v`.a tˆ n tai c´c<br />
` . a<br />
´<br />
ıa<br />
e a<br />
o<br />
u u o<br />
ph´p (syntax) v` ng˜<br />
a<br />
a u<br />
`<br />
’ o<br />
u<br />
o u a o<br />
o .<br />
PTDL mo. rˆng kinh diˆ n, v`.a tˆ n tai nh˜.ng PTDL m`., t´.c l` khˆng c´ su. PTDL kinh diˆ n<br />
e’<br />
u o .<br />
e’<br />
.<br />
.o.c biˆ u thi b˘ ng c´c PTDL m`. n`y.<br />
’<br />
e<br />
a<br />
a<br />
o a<br />
du .<br />
. `<br />
.ng kh´i niˆm co. ban vˆ DSGT v` CSDL ngˆn ng˜. s˜ du.o.c tr` b`y ng˘n<br />
´<br />
´<br />
’ `<br />
Tiˆp theo, nh˜<br />
e<br />
u<br />
a e<br />
e<br />
ınh a<br />
a<br />
a<br />
o<br />
u e<br />
.<br />
.<br />
` dˆ tu.o.ng tu. gi˜.a c´c d˜. liˆu cua thuˆc t´ ngˆn<br />
’<br />
o ınh o<br />
a<br />
e<br />
a e<br />
e .<br />
gon trong Muc 2, d˘c biˆt kh´i niˆm vˆ o<br />
. u a u e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
` a .<br />
e<br />
e .<br />
a e<br />
o a<br />
ıa<br />
ng˜. s˜ du.o.c dˆ cˆp lai. Trong Muc 3, kh´i niˆm phu thuˆc h`m tu.o.ng tu. s˜ du.o.c dinh ngh˜<br />
u e<br />
.<br />
.<br />
. .<br />
.<br />
.<br />
.<br />
.<br />
.u. N´ s˜ l` mˆt su. mo. rˆng rˆ t gˆn g˜i v´.i phu thuˆc h`m kinh diˆ n v` do vˆy<br />
’ a<br />
´ ` u o<br />
o e a o . ’ o<br />
a a<br />
o a<br />
e<br />
a<br />
v` nghiˆn c´<br />
a<br />
e u<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
e u<br />
o e e a<br />
e o<br />
e e `<br />
e<br />
a<br />
ch´ng c´ thˆ du.o.c nghiˆn c´.u trong mˆi liˆn hˆ ch˘t ch˜ v´.i nhau. Hˆ tiˆn dˆ Armstrong v`<br />
u<br />
o e’<br />
.<br />
. .<br />
.<br />
˜n c`n d´ng dˆi v´.i l´.p phu thuˆc m´.i v` do d´ vai tr` kh´c biˆt cua<br />
´<br />
’ ’ o a<br />
o<br />
o a<br />
a<br />
o o o<br />
o<br />
o a<br />
e ’<br />
t´ dˆy du cua n´ vˆ o u<br />
ınh `<br />
.<br />
.<br />
.<br />
hai loai phu thuˆc d˜. liˆu n`y trong c`ng mˆt CSDL ngˆn ng˜. c˜ng du.o.c xem x´t. Mˆt sˆ<br />
o u e a<br />
u<br />
o<br />
o<br />
u u<br />
e<br />
o o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. ´<br />
.o.c tr` b`y trong phˆn kˆt luˆn, Muc 4.<br />
`<br />
´ a<br />
´ a a a a `<br />
´ e ’<br />
ınh a<br />
a e<br />
kˆt luˆn v` c´c vˆ n dˆ ngo du .<br />
e<br />
.<br />
.<br />
.<br />
. ’<br />
´<br />
ˆ<br />
ˆ<br />
˜.<br />
`<br />
E<br />
2. NHU NG KHAI NIEM CO BAN V` DSGT VA CSDL<br />
.<br />
.<br />
.<br />
ˆ<br />
ˆ<br />
˜<br />
´<br />
VO I THONG TIN NGON NGU<br />
` . o<br />
´<br />
’<br />
2.1. Vˆ dai sˆ gia tu. (DSGT)<br />
e<br />
´ .<br />
’ y u<br />
a<br />
ıa o<br />
u<br />
a<br />
e a<br />
Dˆ dˆ theo d˜i phu.o.ng ph´p xu. l´ ng˜. ngh˜ ngˆn ng˜. theo c´ch tiˆp cˆn DSGT, ta t´m<br />
e’ ˜<br />
e<br />
o<br />
o<br />
´t lai mˆt sˆ kh´i niˆm vˆ ´nh xa dinh lu.o.ng v` c´ch th´.c x´c dinh c´c hˆ lˆn cˆn ng˜.<br />
` a<br />
a a<br />
u a .<br />
a e a a<br />
u<br />
t˘ .<br />
a<br />
o o<br />
e<br />
.<br />
.<br />
.<br />
. ´ a e<br />
.<br />
. .<br />
o<br />
u a<br />
o ınh o<br />
u<br />
a a<br />
a .<br />
ngh˜ dinh lu.o.ng. Trong CSDL ngˆn ng˜., c´c thuˆc t´ ngˆn ng˜., ngo`i c´c gi´ tri kinh<br />
ıa .<br />
.<br />
.<br />
˜<br />
diˆ n ch´ng c´ thˆ c´ c´c k´ hiˆu gi´ tri ngˆn ng˜.. V` vˆy, mˆi thuˆc t´ ngˆn ng˜. s˜ du.o.c<br />
e’<br />
u<br />
o e’ o a y e<br />
a . o<br />
u<br />
ı a<br />
o<br />
o ınh o<br />
u e<br />
.<br />
.<br />
.<br />
.<br />
.i mˆt DSGT.<br />
´ ´<br />
g˘n kˆt v´ o<br />
a e o<br />
.<br />
´<br />
’<br />
X<br />
e ınh `<br />
a<br />
o<br />
Cho mˆt DSGT tuyˆn t´ dˆy du AX = (X , G, H , σ , Φ, ), trong d´ Dom(X ) = X<br />
o<br />
.<br />
. cua thuˆc t´ ngˆn ng˜. X du.o.c sinh tu. do t`. tˆp c´c phˆn<br />
`<br />
l` miˆn c´c gi´ tri ngˆn ng˜ ’<br />
a `<br />
e a<br />
a . o<br />
u<br />
o ınh o<br />
u<br />
u a a<br />
a<br />
.<br />
.<br />
.<br />
.<br />
`<br />
’. sinh G = {1 , c+, W , c−, 0} b˘ ng viˆc t´c dˆng tu. do c´c ph´p to´n mˆt ngˆi (c´c gia<br />
1<br />
a<br />
e a o<br />
a<br />
e<br />
a<br />
o<br />
o<br />
a<br />
thu<br />
.<br />
.<br />
.<br />
.<br />
’<br />
a<br />
a<br />
a<br />
e ınh o<br />
u<br />
ıa a a<br />
e<br />
o<br />
u<br />
a a<br />
tu.) trong tˆp H ; σ v` φ l` hai ph´p t´ v´.i ng˜. ngh˜ l` cˆn trˆn d´ng v` cˆn du.´.i<br />
.<br />
.<br />
.<br />
.c l` σx = supremumH (x) and φx = inf imumH (x), trong d´ H (x)<br />
’ a<br />
H<br />
H<br />
d´ng cua tˆp H (x), t´ a<br />
u<br />
u<br />
o<br />
.<br />
´<br />
´<br />
` u<br />
u<br />
o<br />
e<br />
l` quan hˆ s˘p th´. tu. tuyˆn t´ trˆn<br />
a<br />
e a<br />
u .<br />
e ınh e<br />
l` tˆp c´c phˆn t`. sinh ra t`. x, c`n quan hˆ<br />
a a a<br />
a<br />
.<br />
.<br />
.<br />
´<br />
’<br />
’<br />
X cam sinh tu. ng˜. ngh˜ cua ngˆn ng˜.. V´ du, nˆu ta c´ thuˆc t´ N umIP (Numu<br />
ıa ’<br />
o<br />
u<br />
ı . e<br />
o<br />
o ınh<br />
.<br />
´ ´<br />
´<br />
e .<br />
ı o e<br />
ı<br />
ber of International Papers) l` “Sˆ b`i b´o d˘ng trˆn tap ch´ quˆc tˆ”, th` Dom(N umIP) =<br />
a o a a a<br />
<br />
˜<br />
ˆ<br />
˘<br />
NGUYEN VAN LONG<br />
<br />
166<br />
<br />
{large, small, verylarge, morelarge, possiblylarge, verysmall, possiblysmall, lesssmall, ...},<br />
1<br />
G = {1, large, W , small, 0}, H = {very, more, possibly, little} v`<br />
a<br />
mˆt quan hˆ th´. tu.<br />
o<br />
e u .<br />
.<br />
.<br />
. ng˜. ngh˜ cua c´c t`. trong Dom(N umIP), ch˘ng han ta c´ verylarge ><br />
’<br />
’<br />
u<br />
ıa ’<br />
a u<br />
a<br />
o<br />
cam sinh t`<br />
u<br />
.<br />
large, morelarge > large, possiblylarge < large, littlelarge < large, ...<br />
´<br />
`<br />
o<br />
e u a<br />
Du.a trˆn cˆ u tr´c cua DSGT, trong d´ quan hˆ gi˜.a c´c phˆn tu. l` quan hˆ th´. tu. ng˜.<br />
e a<br />
u ’<br />
a ’ a<br />
u<br />
e u .<br />
.<br />
.<br />
.<br />
’ ınh o a o<br />
a e<br />
o a<br />
ngh˜ mˆ h` to´n hoc cua t´ m`. v` dˆ do t´ m`. cua c´c kh´i niˆm m`. d˜ du.o.c dinh<br />
ıa, o ınh a<br />
ınh o ’ a<br />
.<br />
. .<br />
.<br />
.<br />
ngh˜ trong [6, 7].<br />
ıa<br />
’<br />
’ ’ a<br />
a<br />
Gia su. c´c gia tu. trong tˆp H = H − ∪ H + , du.o.c liˆt kˆ nhu. sau:<br />
.<br />
. e e<br />
.<br />
+<br />
a<br />
H = {h1, ..., hp} v` H − = {h−1 , ..., h−q}, v´.i h1 < ... < hp v` h−1 < ... < h−q ,<br />
a<br />
o<br />
o<br />
trong d´ p, q > 1.<br />
`<br />
Cho f m : X → [0, 1] l` dˆ do t´ m`. cua DSGT AX , ta c´ mˆnh dˆ sau.<br />
a o<br />
ınh o ’<br />
o e<br />
e<br />
.<br />
.<br />
`<br />
’<br />
a o<br />
o a<br />
e<br />
o<br />
ınh o<br />
ınh o ’<br />
Mˆnh dˆ 2.1. ([6, 7]) Dˆ do t´ m`. f m v` dˆ do t´ m`. cua gia tu. µ(h), ∀h ∈ H , c´ c´c<br />
e<br />
.<br />
.<br />
.<br />
´t sau:<br />
t´ chˆ<br />
ınh a<br />
1) f m(hx) = µ(h)f m(x), ∀x ∈ X<br />
2) f m(c− ) + f m(c+ ) = 1<br />
3)<br />
f m(hi c) = f m(c), trong d´ c ∈ {c− , c+}<br />
o<br />
−q i p, i=0<br />
<br />
f m(hi x) = f m(x), x ∈ X<br />
<br />
4)<br />
−q i p, i=0<br />
<br />
o<br />
a<br />
5) {µ(hi ) : −q i −1} = α v`, {µ(hi ) : 1 i p} = β, trong d´ α + β > 0 v`<br />
a<br />
α + β = 1.<br />
’. a<br />
˜<br />
´<br />
’<br />
O dˆy m˘c d` 3) l` tru.`.ng ho.p riˆng cua 4), nhu.ng vˆn du.o.c viˆt ra dˆ dˆ h` dung<br />
o<br />
e<br />
a<br />
e<br />
a u<br />
a<br />
e’ ˜ ınh<br />
e<br />
.<br />
.<br />
.<br />
. cua c´c kh´i niˆm m`..<br />
’<br />
a e<br />
o<br />
viˆc h` th`nh c´c khoang t´ m` ’ a<br />
e ınh a<br />
a<br />
ınh o<br />
.<br />
.<br />
. cua kh´i niˆm m`.. Gia su. thuˆc t´ (hay biˆn ngˆn ng˜.) X c´ miˆn tham<br />
´<br />
’ ’<br />
’<br />
a<br />
e<br />
o<br />
Khoang m` ’<br />
o<br />
o `<br />
e<br />
o ınh<br />
e<br />
o<br />
u<br />
.<br />
.<br />
.c l` khoang [a, b]. Dˆ chuˆ n h´a, nh`. mˆt ph´p biˆn dˆ i tuyˆn t´<br />
’<br />
’ o<br />
’<br />
´ o<br />
´<br />
´<br />
´<br />
’<br />
’<br />
e<br />
e<br />
e<br />
a<br />
o o<br />
e ınh, ta gia thiˆt<br />
e<br />
chiˆu thu a<br />
e<br />
.<br />
.<br />
`<br />
’<br />
a ` a<br />
a o a<br />
e<br />
e<br />
ı o<br />
ınh o<br />
moi miˆn nhu. vˆy dˆu l` khoang [0, 1]. V` dˆ do t´ m`. f m l` mˆt ´nh xa X → [0, 1], nˆn<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
˜ a<br />
`<br />
´<br />
’<br />
’<br />
e<br />
e’<br />
e<br />
a .<br />
a<br />
a<br />
n´ go.i y dˆn viˆc biˆ u diˆn c´c gi´ tri f m(x), x ∈ X , b˘ ng c´c khoang con cua doan [0, 1]<br />
o . ´ e<br />
.<br />
.<br />
.o.c goi l` khoang m`. cua kh´i niˆm x. Nhu. vˆy, c´c khoang m`. l` mˆt biˆ u diˆn dinh<br />
˜ .<br />
’<br />
’<br />
’<br />
v` du .<br />
a<br />
o<br />
a e<br />
a a<br />
o a o<br />
e’<br />
e<br />
. a<br />
.<br />
.<br />
.<br />
´<br />
’<br />
lu.o.ng c´c kh´i niˆm m`. cua mˆt biˆn ngˆn ng˜.. Cho tru.´.c f m, c´c khoang m`. cua c´c kh´i<br />
a<br />
a e<br />
o ’<br />
o<br />
e<br />
o<br />
u<br />
o<br />
a<br />
o ’ a<br />
a<br />
.<br />
.<br />
.<br />
. trong X du.o.c xˆy du.ng quy nap theo dˆ d`i cua x ∈ X nhu. sau:<br />
’<br />
niˆm m`<br />
e<br />
o<br />
o a<br />
. a<br />
.<br />
.<br />
.<br />
.<br />
´<br />
’<br />
’<br />
a e<br />
e<br />
a<br />
o a<br />
a u ınh a<br />
o<br />
- Khoang m`. cua hai kh´i niˆm nguyˆn thuy c− v` c+ : R˜ r`ng l` t`. t´ chˆ t 2) ta c´<br />
o ’<br />
.<br />
’ xˆy du.ng hai khoang m`. (c− ) v` (c+) cua hai kh´i niˆm nguyˆn thuy c− v` c+ , v´.i<br />
’<br />
’<br />
’<br />
o<br />
a<br />
a e<br />
e<br />
a<br />
o<br />
thˆ a<br />
e<br />
.<br />
.<br />
’ o a ’<br />
’<br />
o<br />
| (c− )| = f m(c− ) v` | (c+)| = f m(c+ ), trong d´ | (x)| chı dˆ d`i cua khoang (x), sao<br />
a<br />
.<br />
`<br />
´<br />
’<br />
o<br />
e o<br />
cho v` ch´ng tao th`nh mˆt phˆn hoach cua [0, 1] v` (c−), (c+ ) dˆ ng biˆn v´.i c− , c+ , t´.c<br />
a u<br />
a<br />
o<br />
a<br />
a<br />
u<br />
.<br />
.<br />
.<br />
−<br />
+ k´o theo (c−)<br />
+ ), o. dˆy (c−)<br />
+) du.o.c hiˆ u l` v´.i ∀x ∈ (c−) v`<br />
’ a<br />
e’ a o<br />
a<br />
l` c<br />
a<br />
c<br />
e<br />
(c<br />
(c<br />
.<br />
+ ), ta c´ x<br />
∀y ∈ (c<br />
o<br />
y.<br />
’<br />
’ ’ `<br />
’ ng m`. cua x dˆ d`i k > 1: Mˆt c´ch quy nap, ta gia su. r˘ ng v´.i ∀x ∈ X k−1 =<br />
a<br />
o<br />
o a<br />
o a<br />
- Khoa<br />
o<br />
.<br />
.<br />
.<br />
.ng du.o.c khoang m`. (x), v´.i |((x)| = f m(x),<br />
’<br />
o<br />
o<br />
a a<br />
{x ∈ X : x c´ dˆ d`i |x| = k − 1}, ta d˜ xˆy du<br />
o o a<br />
.<br />
.<br />
.<br />
`<br />
´ o<br />
o<br />
e<br />
sao cho { (x) : x ∈ X k−1 } dˆ ng biˆn v´.i th´. tu. trˆn tˆp X k−1 v` tao th`nh mˆt phˆn<br />
u . e a<br />
a .<br />
a<br />
o<br />
a<br />
.<br />
.<br />
˜<br />
´<br />
’<br />
’<br />
’<br />
ınh a<br />
hoach cua doan [0, 1]. Khi d´, trˆn mˆi khoang m`. (x) cua x ∈ X k−1 , do t´ chˆ t 4), ta<br />
o e<br />
o<br />
o<br />
.<br />
.<br />
’<br />
i<br />
p, i = 0, | (hix)| = f m(hi x)}<br />
c´ thˆ xˆy du.ng du.o.c ho c´c khoang { (hix) : q<br />
o e’ a<br />
.<br />
.<br />
. a<br />
`<br />
`<br />
´<br />
’<br />
’<br />
a o<br />
u . a<br />
a ’<br />
sao cho ch´ng l` mˆt phˆn hoach cua khoang m`. (x) v` dˆ ng biˆn v´.i th´. tu. c´c phˆn tu.<br />
u<br />
a o<br />
a<br />
o<br />
e o<br />
.<br />
.<br />
{hi x : q i p, i = 0}.<br />
´ .<br />
C´ thˆ thˆ y ho { (hix) : q i p, i = 0, | (hix)| = f m(hi x) v` x ∈ X k−1 } = { (y) :<br />
o e’ a<br />
a<br />
<br />
. ’ . ˜. ˆ<br />
ˆ<br />
˜. ˆ<br />
ˆ<br />
PHU THUOC DU LIEU TRONG CO SO DU LIEU QUAN HE<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
167<br />
<br />
’<br />
’<br />
’<br />
y ∈ X k v` | (y)| = f m(y)} l` mˆt phˆn hoach cua [0, 1]. C´c khoang n`y goi l` c´c khoang<br />
a<br />
a o<br />
a<br />
a<br />
a . a a<br />
.<br />
.<br />
. m´.c k.<br />
m` u<br />
o<br />
a o o . e e a<br />
e u<br />
u<br />
ıa o<br />
u ’ a<br />
a e<br />
o a<br />
Nhu. vˆy, c´ mˆt su. liˆn hˆ ch˘t ch˜ gi˜.a ng˜. ngh˜ ngˆn ng˜. cua c´c kh´i niˆm m`. v`<br />
.<br />
.<br />
.<br />
.<br />
.<br />
˜<br />
´ o<br />
`<br />
`<br />
’<br />
o<br />
a ’<br />
a<br />
o<br />
e<br />
c´c khoang m`. trong doan [0, 1] nhu. sau: (i) Mˆi phˆn tu. x ∈ X dˆu du.o.c g˘n v´.i mˆt<br />
a<br />
o<br />
.<br />
.<br />
.<br />
. (x) c´ dˆ d`i ch´ b˘ ng dˆ do t´ m`. cua x; (ii) Nˆu x l` hˆu tˆ cua x, t´.c<br />
`<br />
´<br />
’<br />
ınh a<br />
o<br />
ınh o ’<br />
khoang m`<br />
o<br />
o o a<br />
e<br />
a a o ’<br />
u<br />
.<br />
.<br />
. ´<br />
’ a<br />
a<br />
ı<br />
l` n´ l` xˆu con bˆn tr´i c`ng cua xˆu x hay, n´i kh´c di, x sinh ra xˆu x, th` (x) ⊂ (x );<br />
a o a a<br />
e<br />
a u<br />
o<br />
a<br />
´<br />
o a a<br />
ı<br />
(x ).<br />
(iii) Nˆu x v` x c´ c`ng dˆ d`i v` x x th` (x)<br />
e<br />
a<br />
o u<br />
.<br />
.ng t´ chˆ t rˆ t quan trong cua c´c khoang m`. du.o.c dinh ngh˜ du.a trˆn cˆ u<br />
´ a<br />
´<br />
´<br />
’ a<br />
’<br />
ınh a<br />
o<br />
e a<br />
Dˆy l` nh˜<br />
a a u<br />
ıa .<br />
.<br />
. .<br />
. so. dˆ dinh ngh˜ hˆ lˆn cˆn ng˜. ngh˜ cua x d˜ du.o.c dinh ngh˜ trong<br />
ıa ’<br />
a a<br />
ıa e a a<br />
u<br />
a<br />
ıa<br />
tr´c DSGT v` l` co ’ e’ .<br />
u<br />
. .<br />
.<br />
.<br />
.o.c tr` b`y t´m t˘t du.´.i dˆy.<br />
´<br />
[3] v` s˜ du .<br />
a e<br />
ınh a o<br />
a<br />
o a<br />
´<br />
´<br />
’<br />
Dinh ngh˜ 2.1. Anh xa f : X → [0, 1] du.o.c goi l` ´nh xa dinh lu.o.ng cua DSGT AX nˆu<br />
ıa<br />
e<br />
.<br />
.<br />
. aa<br />
. .<br />
.<br />
.<br />
n´ thoa m˜n c´c diˆu kiˆn sau:<br />
o ’<br />
a a `<br />
e<br />
e<br />
.<br />
a<br />
Q1) f l` ´nh xa do.n ´nh.<br />
aa<br />
.<br />
’<br />
Q2) f bao to`n quan hˆ th´. tu. ng˜. ngh˜ trˆn X , ngh˜ l` x < y ⇒ f (x) < f (y), v`<br />
a<br />
e u .<br />
u<br />
ıa e<br />
ıa a<br />
a<br />
.<br />
0<br />
1<br />
f (0 ) = 0, f (1) = 1.<br />
φ<br />
H<br />
H<br />
a σ<br />
Q3) f liˆn tuc theo ngh˜ v´.i ∀x ∈ X , f (φ x) = inf f (H (x)) v` f (σ x) = sup f (H (x)).<br />
e .<br />
ıa o<br />
˜<br />
` ’<br />
´<br />
´ gia tu., mˆi phˆn tu. x ∈ X dˆu mang dˆ u ˆm hay du.o.ng, du.o.c goi l` PN-dˆ u<br />
`<br />
´ a<br />
’<br />
o<br />
a<br />
a<br />
e<br />
a<br />
Trong dai sˆ<br />
. . a<br />
. o<br />
.o.c dinh ngh˜ dˆ quy nhu. sau.<br />
ıa e<br />
v` du . .<br />
a<br />
.<br />
´<br />
´<br />
Dinh ngh˜ 2.2. (H`m PN-dˆ u Sgn) Sgn : X → {−1, 0, 1} l` h`m dˆ u du.o.c x´c dinh nhu.<br />
ıa<br />
a<br />
a<br />
a a<br />
a<br />
. a .<br />
.<br />
’ a<br />
a<br />
sau, o. dˆy h, h ∈ H , v` c ∈ {c− , c+}<br />
a) Sgn(c−) = −1, Sgn(c+) = +1.<br />
´<br />
b) Sgn(h hx) = 0, nˆu h hx = hx, ngu.o.c lai ta c´:<br />
e<br />
o<br />
. .<br />
´ o<br />
´<br />
o<br />
Sgn(h hx) = −Sgn(hx), nˆu h hx = hx v` h l` ˆm t´<br />
e<br />
a<br />
a a<br />
ınh dˆi v´.i h<br />
´<br />
(ho˘c c, nˆu h = I v` x = c),<br />
a<br />
e<br />
a<br />
.<br />
´<br />
´<br />
ınh dˆi v´.i h<br />
o<br />
o<br />
Sgn(h hx) = +Sgn(hx), nˆu h hx = hx v` h du.o.ng t´<br />
e<br />
a<br />
´<br />
(ho˘c c, nˆu h = I v` x = c).<br />
a<br />
e<br />
a<br />
.<br />
´ ngh˜ cua PN-dˆ u thˆ hiˆn trong mˆnh dˆ du.´.i dˆy.<br />
’ e<br />
´<br />
`<br />
Y<br />
ıa ’<br />
a<br />
e .<br />
e<br />
o a<br />
e<br />
.<br />
´<br />
´<br />
`<br />
e<br />
ı<br />
e<br />
Mˆnh dˆ 2.2. V´.i moi x ∈ X , ∀h ∈ H, nˆu Sgn(hx) = +1 th` hx > x, nˆ u Sgn(hx) = −1<br />
e<br />
e<br />
o<br />
.<br />
.<br />
´<br />
th` hx < x v` nˆu Sgn(hx) = 0 th` hx = x.<br />
ı<br />
a e<br />
ı<br />
´<br />
´<br />
’<br />
a a<br />
ıa .<br />
V´.i c´c t´ chˆ t cua t´ m`. v` h`m PN-dˆ u, ´nh xa ng˜. ngh˜ dinh lu.o.ng cua DSGT<br />
o a ınh a ’ ınh o a a<br />
. u<br />
.<br />
.o.c dinh ngh˜ nhu. sau.<br />
du . .<br />
ıa<br />
`<br />
´<br />
’ ’<br />
’<br />
X<br />
a o<br />
Dinh ngh˜ 2.3. Gia su. AX = (X , G, H , σ , Φ, ) l` mˆt DSGT dˆy du, tuyˆn t´ v` tu.<br />
ıa<br />
a<br />
e ınh a .<br />
.<br />
.<br />
’<br />
’<br />
´<br />
a a o<br />
o<br />
u a ’<br />
a<br />
do, f m(x) v` µ(h) tu.o.ng u.ng l` c´c dˆ do t´ m`. cua ngˆn ng˜. v` cua gia tu. h thoa m˜n<br />
a<br />
ınh o ’<br />
.<br />
.i dˆ do t´ m`. f m<br />
`<br />
´<br />
’ .<br />
e<br />
o<br />
o<br />
aa<br />
ınh o<br />
c´c t´ chˆ t trong Mˆnh dˆ 2.1. Khi d´, ta n´i ν l` ´nh xa cam sinh bo o<br />
a ınh a<br />
e<br />
. ’<br />
.<br />
´<br />
’<br />
a .<br />
cua ngˆn ng˜. nˆu n´ du.o.c x´c dinh nhu. sau:<br />
o<br />
u e o<br />
.<br />
W<br />
1) ν(W ) = κ = f m(c− ), ν(c− ) = κ − αf m(c− ) = βf m(c− ), ν(c+ ) = κ + αf m(c+ ).<br />
j<br />
<br />
µ(hi )f m(x) − ω(hj x)µ(hj )f m(x)} trong d´,<br />
o<br />
<br />
2) ν(hj x) = ν(x) + Sgn(hj x){<br />
i=Sgn(j)<br />
<br />
1<br />
o<br />
a<br />
ω(hj x) = 2 [1 + Sgn(hj x)Sgn(hphj x)(β − α)] ∈ {α, β}, v´.i moi j, −q j p v` j = 0.<br />
.<br />
φ<br />
φ<br />
a<br />
3) ν(φ c− ) = 0, ν(σ(c−) = κ = ν(φ c+ ), ν(σc+) = 1, v` v´.i moi j, −q j p v` j = 0,<br />
a o<br />
.<br />
ch´ng ta c´:<br />
u<br />
o<br />
<br />
˜<br />
ˆ<br />
˘<br />
NGUYEN VAN LONG<br />
<br />
168<br />
<br />
j−1<br />
<br />
µ(hi )f m(x)} v`<br />
a<br />
<br />
ν(φhj x) = ν(x) + Sgn(hj x){<br />
i=Sign(j)<br />
j<br />
<br />
ν(σhj x) = ν(x) + Sgn(hj x){<br />
<br />
µ(hi )f m(x)}.<br />
i=Sign(j)<br />
<br />
´<br />
’<br />
a ’ a<br />
a o<br />
ınh a e’<br />
o<br />
Th´.c chˆ t cua ´nh xa ν l`, v´.i moi x = hj u, ν(x) ch´ l` diˆ m chia trong khoang m`.<br />
u<br />
.<br />
.<br />
.o.c lai, n´ l` diˆ m chia trong khoang<br />
´<br />
´<br />
’ e<br />
’<br />
(x) theo ty lˆ α : β nˆu Sgn(hphj u) = +1 v`, nˆu ngu . .<br />
e<br />
a e<br />
o a e’<br />
.<br />
´<br />
’ e<br />
(x) theo ty lˆ β : α. Nhu. vˆy, ch´ng ta c´ mˆi quan hˆ ch˘t ch˜ gi˜.a gi´ tri ´nh xa dinh<br />
a<br />
u<br />
o o<br />
e a<br />
e u<br />
a .a<br />
.<br />
.<br />
.<br />
.<br />
. .<br />
’<br />
’<br />
ıa ’<br />
a . o<br />
u<br />
e’<br />
a<br />
o ’<br />
a u<br />
lu.o.ng cua DSGT v` ng˜. ngh˜ cua gi´ tri ngˆn ng˜. du.o.c biˆ u thi qua c´c khoang m`. cua<br />
.<br />
.<br />
.<br />
. r˘ ng ban chˆ t c´c phu.o.ng ph´p khu.<br />
´<br />
`<br />
´<br />
’<br />
’<br />
a a<br />
a<br />
ch´ng. Diˆu n`y d˘c biˆt c´ y ngh˜ nˆu ch´ng ta nh´ `<br />
u<br />
e a a<br />
e o´<br />
ıa e<br />
u<br />
o a<br />
.<br />
.<br />
. (defuzzification methods) ch´ l` thiˆt lˆp c´c ´nh xa dinh lu.o.ng. Tuy nhiˆn, c´c phu.o.ng<br />
´ a a a<br />
m`<br />
o<br />
ınh a e .<br />
e<br />
a<br />
. .<br />
.<br />
´<br />
a<br />
o<br />
e . e e a<br />
e o<br />
u<br />
ıa o<br />
u<br />
ph´p nhu. vˆy khˆng du.a trˆn su. liˆn hˆ mˆt thiˆt v´.i ng˜. ngh˜ ngˆn ng˜. (!).<br />
a<br />
.<br />
.<br />
. .<br />
´<br />
`<br />
´ o a y o<br />
e<br />
a .<br />
ıa<br />
a<br />
o a<br />
Ch´ ´: T`. Mˆnh dˆ 2.1 v` Dinh ngh˜ 2.3 cho thˆ y, v´.i bˆ t k` mˆt DSGT, ta luˆn xˆy du.ng<br />
uy u e<br />
.<br />
.<br />
.<br />
’<br />
u o<br />
a<br />
a<br />
du.o.c dˆ do t´ m`. v` h`m dinh lu.o.ng cam sinh t`. dˆ do t´ m`. b˘ ng c´ch lu.a chon c´c<br />
o<br />
ınh o a a<br />
ınh o `<br />
.<br />
.<br />
.<br />
. a<br />
.<br />
.<br />
.<br />
. cua c´c phˆn tu. nguyˆn thuy c− v` c+ v` cua c´c gia tu. sao cho<br />
`<br />
’<br />
’<br />
ınh o<br />
c´c gi´ tri dˆ do t´ m` ’ a<br />
a<br />
a . o<br />
a ’<br />
e<br />
a<br />
a ’ a<br />
.<br />
`<br />
´ .<br />
´<br />
’ a m˜n t´ chˆ t 2) v` 5) cua Mˆnh dˆ 2.1, c`n goi l` bˆ tham sˆ dinh lu.o.ng. N´i<br />
’<br />
e<br />
o . a o<br />
o<br />
o<br />
ch´ng tho<br />
u<br />
a ınh a<br />
a<br />
e<br />
.<br />
.<br />
.<br />
´<br />
’<br />
o o ´<br />
e’ a<br />
kh´c di, ta s˜ c´ mˆt bˆ tham sˆ dˆ diˆu chınh cho th´ u.ng v´.i mˆt u.ng dung cu thˆ n`o<br />
a<br />
e o o o<br />
o e’ `<br />
e<br />
ıch ´<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
’<br />
d´. Ngo`i ra, t`. t´ chˆ t 3), Dinh ngh˜ 2.3 ta thˆ y, khoang m`. (x) = (νA (φx), νA (σx)].<br />
o<br />
a<br />
u ınh a<br />
ıa<br />
a<br />
o<br />
.<br />
`<br />
2.2. Vˆ CSDL ngˆn ng˜.<br />
e<br />
o<br />
u<br />
’. u u<br />
Trong [3], kh´i niˆm CSDL ngˆn ng˜. d˜ du.o.c du.a ra v` nghiˆn c´.u. O m´.c c´ ph´p,<br />
a e<br />
o<br />
u a<br />
a<br />
e u<br />
a<br />
.<br />
.<br />
’<br />
˜<br />
`<br />
`<br />
a y a<br />
e<br />
o a ı a<br />
u<br />
a ’ .<br />
kh´i niˆm n`y khˆng c´ nhiˆu thay dˆ i v` v` vˆy ch´ng ta vˆn su. dung c´c k´ ph´p truyˆn<br />
a e<br />
a<br />
o<br />
o<br />
e<br />
.<br />
.<br />
.i thiˆu t´m t˘t c´c kh´i niˆm ch´<br />
´<br />
´<br />
e o<br />
a a<br />
a e<br />
ınh.<br />
a e o<br />
thˆng. Sau dˆy s˜ gi´<br />
o<br />
.<br />
.<br />
.o.c dˆ CSDL DB = {U, R , R , ..., R ; const}, trong d´ U = {A , A , ..., A }<br />
`<br />
o<br />
X´t mˆt lu . o<br />
e<br />
o<br />
1<br />
2<br />
m<br />
1<br />
2<br />
n<br />
.<br />
`<br />
’<br />
l` tˆp v˜ tru c´c thuˆc t´<br />
a a u . a<br />
o ınh, Ri lu.o.c dˆ quan hˆ, t´.c l` mˆt tˆp con cua U, const l` mˆt<br />
a o<br />
o<br />
e u a o a<br />
.<br />
.<br />
.<br />
. .<br />
.<br />
.<br />
˜<br />
´<br />
`<br />
o<br />
o ınh<br />
e<br />
a .<br />
o<br />
tˆp c´c r`ng buˆc d˜. liˆu cua CSDL. Mˆi thuˆc t´ A du.o.c g˘n v´.i mˆt miˆn gi´ tri thuˆc<br />
a a a<br />
o u e ’<br />
.<br />
.<br />
. a o o<br />
.<br />
.<br />
.<br />
.<br />
o o o<br />
o ınh<br />
e<br />
a a<br />
a . o<br />
u<br />
t´<br />
ınh, k´ hiˆu l` Dom(A), trong d´ mˆt sˆ thuˆc t´ cho ph´p nhˆn c´c gi´ tri ngˆn ng˜.<br />
y e a<br />
. ´<br />
.<br />
.<br />
.<br />
.u tr˜. trong CSDL hay trong c´c cˆu hoi truy vˆ n v` du.o.c goi l` thuˆc t´ ngˆn<br />
´ a<br />
’<br />
u<br />
a a<br />
a<br />
o ınh o<br />
trong lu<br />
.<br />
. a<br />
.<br />
.. Nh˜.ng thuˆc t´ c`n lai du.o.c goi l` thuˆc t´ thu.c hay kinh diˆ n. Thuˆc t´ thu.c<br />
’<br />
u<br />
o ınh o .<br />
o ınh .<br />
e<br />
o ınh .<br />
ng˜<br />
u<br />
.<br />
.<br />
. a<br />
.<br />
.<br />
´<br />
`<br />
e’<br />
y e a<br />
o ınh o<br />
u<br />
A du.o.c g˘n v´.i mˆt miˆn gi´ tri kinh diˆ n, k´ hiˆu l` DA . Thuˆc t´ ngˆn ng˜. A s˜ du.o.c<br />
a o o<br />
e<br />
a .<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
´n mˆt miˆn gi´ tri kinh diˆ n DA v` mˆt miˆn gi´ tri ngˆn ng˜. LDA hay l` tˆp c´c phˆn tu.<br />
`<br />
`<br />
`<br />
a a a<br />
a ’<br />
e<br />
a o<br />
e<br />
a . o<br />
u<br />
g˘<br />
a<br />
o<br />
e<br />
a .<br />
.<br />
.<br />
.<br />
´<br />
´<br />
’ y u<br />
’ o<br />
’<br />
’<br />
ıa u e<br />
e<br />
cua mˆt DSGT. Dˆ bao dam t´ nhˆ t qu´n trong xu. l´ ng˜. ngh˜ d˜. liˆu trˆn co. so. thˆng<br />
o<br />
e’ ’<br />
ınh a<br />
a<br />
.<br />
.<br />
˜<br />
’ u e<br />
´ o<br />
´t kiˆ u d˜. liˆu cua thuˆc t´ ngˆn ng˜., mˆi thuˆc t´ ngˆn ng˜. s˜ du.o.c g˘n v´.i mˆt<br />
’<br />
o ınh o<br />
u<br />
o<br />
o ınh o<br />
u e<br />
o<br />
nhˆ<br />
a<br />
e<br />
.<br />
.<br />
.<br />
. a<br />
.<br />
´<br />
’<br />
’<br />
a .<br />
o o<br />
o .<br />
´nh xa dinh lu.o.ng νA : LDA → DA du.o.c x´c dinh bo.i mˆt bˆ tham sˆ dinh lu.o.ng cua A.<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. .<br />
˜<br />
’<br />
Nhu. vˆy, mˆi gi´ tri ngˆn ng˜. x cua A s˜ du.o.c g´n mˆt nh˜n gi´ tri thu.c νA (x) ∈ DA du.o.c<br />
a<br />
o a . o<br />
u<br />
e<br />
o<br />
a<br />
a . .<br />
.<br />
. a<br />
.<br />
.<br />
e ’<br />
o<br />
a . .<br />
a<br />
a<br />
o<br />
u<br />
xem nhu. gi´ tri dai diˆn cua x. Mˆt CSDL nhu. vˆy du.o.c goi l` CSDL ngˆn ng˜..<br />
.<br />
.<br />
.<br />
.<br />
.<br />
u a u e ’<br />
o<br />
o ınh<br />
a o<br />
Viˆc d´nh gi´ dˆ tu.o.ng tu. (similarity degree) gi˜.a c´c d˜. liˆu cua mˆt thuˆc t´ A du.o.c<br />
e a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.a trˆn kh´i niˆm lˆn cˆn m´.c k cua mˆt gi´ tri ngˆn ng˜., v´.i k l` sˆ nguyˆn du.o.ng.<br />
´<br />
’<br />
e<br />
a e a a<br />
u<br />
o a . o<br />
u o<br />
a o<br />
e<br />
du<br />
.<br />
.<br />
.<br />
.<br />
´<br />
’ ’<br />
’<br />
o e’ a a<br />
o ’ a<br />
Dˆ tu.o.ng tu. m´.c k ([3]) (Similarity degree): Gia su., ta c´ thˆ lˆ y c´c khoang m`. cua c´c<br />
o<br />
. u<br />
.<br />
. dˆ d`i k l`m dˆ tu.o.ng tu. gi˜.a c´c phˆn tu., ngh˜ l` c´c phˆn tu. m` c´c gi´ tri dai<br />
`<br />
`<br />
`<br />
a ’<br />
ıa a a<br />
a ’ a a<br />
a . .<br />
a<br />
o<br />
phˆn tu o a<br />
a ’ .<br />
. u a<br />
.<br />
. m´.c k l` tu.o.ng tu. m´.c k. Tuy nhiˆn, theo c´ch<br />
’<br />
a<br />
e<br />
a<br />
diˆn cua ch´ng thuˆc c`ng mˆt khoang m` u<br />
e ’<br />
u<br />
o u<br />
o<br />
o<br />
. u<br />
.<br />
.<br />
.<br />
` u<br />
’<br />
’<br />
a<br />
o u<br />
a . . e ’ a<br />
o o a<br />
o<br />
a<br />
xˆy du.ng c´c khoang m`. m´.c k, gi´ tri dai diˆn cua c´c phˆn t`. x c´ dˆ d`i nho ho.n k luˆn<br />
a<br />
.<br />
.<br />
.<br />
. m´.c k. Mˆt c´ch ho.p l´, khi dinh ngh˜ lˆn cˆn m´.c k<br />
’<br />
luˆn l` dˆu m´t cua c´c khoang m` u<br />
o a `<br />
a<br />
u ’ a<br />
o<br />
ıa a a<br />
u<br />
o a<br />
.<br />
.<br />
.<br />
. y<br />
´<br />
’ a e’<br />
e<br />
ıa o o ’<br />
ch´ng ta mong muˆn c´c gi´ tri dai diˆn nhu. vˆy phai l` diˆ m trong (theo ngh˜ tˆpˆ) cua<br />
u<br />
o a<br />
a . .<br />
a<br />
.<br />
.<br />
<br />