intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

SỞ GD&ĐT QUẢNG NAM TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THAM KHẢO ÔN THI TỐT NGHIỆP THPT Anh 12

Chia sẻ: Phung Tuyet | Ngày: | Loại File: PDF | Số trang:0

73
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

SỞ GD&ĐT QUẢNG NAM TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THAM KHẢO ÔN THI TỐT NGHIỆP THPT Anh 12 ( Thời gian làm bài 60 phút) Questions 1 - 3: Choose the word among A, B, C or D whose underlined part is pronounced differently from that of the others: 1. A. advanced B. established C. preferred D. stopped 2. A. compose B. opponent C. wholesale D. colony 3. A. epidemic B. illegal C. education D. competitor Questions 4 – 5 : Choose the words among A, B, C or D whose main stress is placed differently from the others: 4. A....

Chủ đề:
Lưu

Nội dung Text: SỞ GD&ĐT QUẢNG NAM TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THAM KHẢO ÔN THI TỐT NGHIỆP THPT Anh 12

  1. Nguoithay.vn 50 Bài tập về bất đẳng thức 1 Bài 1: Cho a  3 , tìm giá trị nhỏ nhất của S  a  a 1 8a a 1 24 a 1 10 Giải: S  a    (  )  2 .  a 9 9 a 9 9 a 3 1 Bài 2: Cho a  2 , tìm giá trị nhỏ nhất của S  a  2 a 1 6a a a 1 12 a a 1 12 3 9 Giải: S  a  2   (   2 )   33 . . 2    a 8 8 8 a 8 8 8 a 8 4 4 1 Bài 3: Cho a,b >0 và a  b  1 , tìm giá trị nhỏ nhất của S  ab  ab 1 1 15 1 15 17 Giải: S  ab   (ab  )  2 ab    ab 2 ab 16ab 16ab 16ab 4 16    2  3 Bài 4: Cho a,b,c>0 và a  b  c  . Tìm giá trị nhỏ nhất của 2 1 1 1 S  a 2  2  b2  2  c 2  2 b c a Giải: Cách 1: Cách 2: 1 1 1 S  a2  2  b2  2  c2  2 b c a 1 1 1 1 4 (12  42 )(a 2  2 )  (1.a  4. ) 2 a 2  2  (a  ) b b b 17 b Tương tự 1 1 4 1 1 4 b2  2  (b  ); c 2  2  (c  ) c 17 c a 17 a Do đó: Nguoithay.vn 1
  2. Nguoithay.vn 1 4 4 4 1 36 S (a  b  c    )  (a  b  c  ) 17 a b c 17 abc 1  9 135  3 17  (a  b  c  4(a  b  c) )  4(a  b  c)   2 17   Bài 5: Cho x,y,z là ba số thực dương và x  y  z  1 . Chứng minh rằng: 1 1 1 x2  2  y 2  2  z 2  2  82 y z x Giải: 1 1 1 1 9 (1.x  9. ) 2  (12  92 )( x 2  2 )  x 2  2  (x  ) y y y 82 y 1 1 9 1 1 9 TT : y 2 2  ( y  ); z 2  2  (z  ) z 82 z x 82 x 1 9 9 9 1 81 S (x  y  z    )  (x  y  z  ) 82 x y z 82 x yz 1  1 80   ( x  y  z  x  y  z )  x  y  z   82 82   Bài 6: Cho a,b,c>0 và a  2b  3c  20 . Tìm giá trị nhỏ nhất của 3 9 4 S  abc   a 2b c Giải: Dự đoán a=2,b=3,c=4 12 18 16  12   18   16  4S  4a  4b  4c     a  2b  3c   3a     2b     c    a b c  a  b  c  20  3.2.2  2.2.3  2.4  52  S  13 1 1 1 Bài 7: Cho x,y,z> 0 và    4 . Tìm giá trị lớn nhất của x y z 1 1 1 P   2x  y  z x  2 y  z x  y  2z Giải: Ta có 1 1 4 1 1 4 1 1 1 1 4 4 16 1 1 1 2 1   ;                x y x y y z yz x y y z x  y y  z x  2y  z x  2 y  z 16  x y z  TT : 1 1 2 1 1 1 1 1 1 2     ;      2 x  y  z 16  x y z  x  y  2 z 16  x y z  1 4 4 4 S     1 16  x y z  Bài 8 Nguoithay.vn 2
  3. Nguoithay.vn x x x  12   15   20  Chứng minh rằng với mọi x  R , ta có          3x  4 x  5x 5 4  3  Giải: x x x x x x x x  12   15   12   15  x  20   15  x  20   12        2   .    2.3 ;       2.5 ;       2.4 x     5 4     5 4     3 4     3 5 Cộng các vế tương ứng => đpcm. Bài 9: Cho x,y,z>0 và x+y+z =6 . Chứng minh rằng 8x  8 y  8z  4x1  4 y 1  4z 1 Giải: Dự đoán x=y=z = 2 và 3 8x.8x  3 64x  4x nên : 8x  8x  82  3 3 8x.8x.82  12.4 x ; 8 y  8 y  82  3 3 8 y.8 y.82  12.4 y ; 8z  8z  82  3 3 8z.8z.82  12.4 z 8x  8 y  8z  3 3 8x.8 y.8z  3 3 82.82.82  192 Cộng các kết quả trên => đpcm. Bài 10: Cho x,y,z>0 và xyz = 1. Hãy chứng minh rằng 1  x3  y 3 1  y3  z3 1  z 3  x3   3 3 xy yz zx Giải: x3  y 3  xy  x  y   1  x3  y 3  xyz  xy  x  y   xy  x  y  z   3xy 3 xyz  3xy 1  x3  y 3 3xy 3 1  y3  z3 3 yz 3 1  z 3  x3 3zx 3   ;   ;   xy xy xy yz yz yz zx zx zx  1 1 1  1 S  3   3 3 3 3  xy zx  2 x y2 z2  yz Bài 11 Cho x, y là hai số thực không âm thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P   x  y 1  xy  1  x  1  y  2 2 Giải:  x  y  1  xy  2  x  y 1  xy   x  y 1  xy   2    1  1  P  1 P   1  x  1  y  1  x  1  y   x  y  1  xy  4 4 2 2 2 2 2 4 Khi cho x=0 và y= 1 thì P = -1/4 Khi cho x=1 và y = 0 thì P = 1/4 KL: Khi dấu = xảy ra. Bài 12 Nguoithay.vn 3
  4. Nguoithay.vn a 3 b3 c 3 Cho a,b,c >0 . Chứng minh rằng:    ab  bc  ca b c a Giải: a3 b3 c3 a 4 b4 c 4 (a 2  b2  c 2 )2  ab  bc  ac  2 Cách 1:         ab  bc  ac b c a ab bc ca ab  bc  ac ab  bc  ac a3 b3 c3 Cách 2:  ab  2a 2 ;  bc  2b2 ;  ca  2a 2 b c a a 3 b3 c 3    2(a 2  b2  c 2 )  ab  bc  ac  ab  bc  ac b c a Bài 13 3x 2  4 2  y 3 Cho x,y >0 và x  y  4 . Tìm giá trị nhỏ nhất của A   4x y2 Giải: Dự đoán x=y=2 3x 2  4 2  y 3 3x 1 2 1 x  2 y y  x y 9 A     2  y     2      x 4  y 4 4  2  2 2 4x y 4 x y 1 1 Bài 14: Cho x,y>0 và x+y = 1. Chứng minh rằng P  3   42 3 x y 3 xy Giải: Ta có  x  y  x3  y 3  3xy(x+y)  x3  y 3  3xy=1 3 x3  y 3  3xy x3  y 3  3xy 3xy x3  y 3 P=   4    42 3 x3  y 3 xy x3  y 3 xy 1 1 1 1 Bài 15: Cho x,y,z >0 và    2 . Chứng minh rằng xyz  1 x 1 y 1 z 8 Giải: 1 1 1 1 1 y z yz  2   1 1   2 1 x 1 y 1 z 1 y 1 z 1 y 1 z 1  y 1  z  1 xz 1 xy TT : 2 ; 2 1 y 1  x 1  z  1  z 1  x 1  y  Nhân các vế của 3 BĐT => đpcm x y z Bài 16: Cho x,y,z>0 và x+y+z = 1. Tìm giá trị lớn nhất của S    x 1 y 1 z 1 Giải: x y z  1 1 1  9 9 3 S    3     3  3  x 1 y 1 z 1  x 1 y 1 z 1  x y  z 3 4 4 Bài 17: 4a 2 5b2 3c 2 Cho a,b,c >1. Chứng minh rằng:    48 a 1 b 1 c 1 Giải: Nguoithay.vn 4
  5. Nguoithay.vn 4a 2 4  a  1  4 2 4 4   4  a  1   4  a  1   8  8  8  16 a 1 a 1 a 1 a 1 5b 2 5 3c 2 3  5  b  1   10  20;  3  c  1   6  12 dpcm b 1 b 1 c 1 c 1 Bài 18 Cho a,b,c >0, chứng ming rằng : 1 1 1  1 1 1     3    a b c  a  2b b  2c c  2a  Giải: 1 1 1 9 1 1 1 9 1 1 1 9    ;    ;    cộng ba bất đẳng thức =>đpcm a b b a  2b b c c b  2c c a a c  2a Bài 19 Với a,b,c >0 chứng minh rằng: 1 4 9 36    a b c abc Giải: 1 4 9 1  2  3 2 36     a b c a bc abc Bài 20: Cho a,b,c,d>0 chứng minh rằng : 1 1 4 16 64     a b c d abcd Giải: 1 1 4 16 16 16 64    ;   a b c a bc a bc d a bc d Cần nhớ: a 2 b2 c2  a  b  c  2    x y z x yz Bài 21 4 5 3  3 2 1  Với a,b,c>0 chứng minh rằng:    4    a b c  ab bc ca  Giải. 1 1 4 3 3 3 1 1 4 2 2 8 1 1 4      ;      ;   a b a b a b a b b c b c b c bc c a c a Bài 22 Với a,b,c là độ dài ba cạnh của một tam giác , p là nửa chu vi tam giác đó. 1 1 1 1 1 1 Chứng minh rằng    2    p a p b p c a b c Giải: Nguoithay.vn 5
  6. Nguoithay.vn 1 1 1 2 2 2      p  a p  b p  c a  b  c a  b  c a  b  c 1 1 1 1 1 1 1 1 1        2    a  b  c a  b  c a  b  c a  b  c a  b  c a  b  c a b c Bài 23 x2 y2 z2 Cho x,y,z>0 và x  y  x  4 . Tìm giá trị nhỏ nhất của P    yz zx x y Giải:  x  y  z   x  y  z  4  2. 2 x2 y2 z2 Cách1: P     y  z z  x x  y 2 x  y  z 2 2 Cách 2: x2 yz y2 zx z2 x y   x;   y;  z yz 4 zx 4 x y 4 x yz x yz 4  P x yx    2. 2 2 2 Bài 24 Cho các số thực dương x,y,z thỏa mãn x+2y+3z =18. Chứng minh rằng 2 y  3z  5 3z  x  5 x  2 y  5 51    1 x 1 2 y 1  3z 7 Giải: 2 y  3z  5 3 z  x  5 x  2 y  5   1 x 1 2 y 1  3z 2 y  3z  5 3z  x  5 x  2y  5  1 1 1 3 1 x 1 2 y 1  3z  1 1 1  9   x  2 y  3z  6       3  24. 3  1  x 1  2 y 1  3z  x  2 y  3z  3 9 51  24.  3  21 7 Bài 25 Chứng minh bất đẳng thức: a 2  b2  1  ab  a  b Giải: Nhân hai vế với 2, đưa về tổng cuuả ba bình phương. Bài 26 Chứng minh rằng nếu a,b,c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì p  a  p  b  p  c  3p Giải: Bu- nhi -a ta có : p  a  p  b  p  c  (12  12  12 )( p  a  p  b  p  c)  3(3 p  2 p)  3 p Bài 27 Nguoithay.vn 6
  7. Nguoithay.vn 1 1 Cho hai số a, b thỏa mãn : a  1; b  4 . Tìm giá trị nhỏ nhất của tổng A  a  b a b 1 1 15b  b 1  15.4 1 17 21 Giải: a   2; b        2.   A  a b 16  16 b  16 4 4 4 Bài 28 Chứng minh rằng a 4  b4  a3b  ab3 Giải:  a 2 2   b2 2  (12  12 )   a 2  b2 2   a 2  b2  a 2  b2   2ab  a 2  b2   a 4  b 4  a3b  ab3   Bài 29 Tìm giá trị nhỏ nhất của biểu thức sau: ( x  y  1)2 xy  y  x A  (Với x; y là các số thực dương). xy  y  x ( x  y  1)2 Giải: ( x  y  1)2 1 Đặt  a; a  0  A  a  Có xy  y  x a 1 8a a 1 8 a 1 8 2 10 10 Aa   (  )  .3  2. .     A  a 9 9 a 9 9 a 3 3 3 3 Bài 30 Cho ba số thực a, b, c đôi một phân biệt. a2 b2 c2 Chứng minh   2 (b  c)2 (c  a) 2 (a  b) 2 Giải: a b b c c a .  .  .  1 (b  c) (c  a) (c  a) (a  b) (a  b) (b  c) 2  a b c  VT      0  (b  c) (c  a) (a  b)  (Không cần chỉ ra dấu = xảy ra hoặ nếu cần cho a= 1,b=0 => c=-1 thì xảy ra dấu =) Bài 31 Cho các số dương a; b; c thoả mãn a + b + c  3 . Chứng ming rằng 1 2009   670 a b c 2 2 2 ab  bc  ca Giải: Nguoithay.vn 7
  8. Nguoithay.vn 1 2009  a  b  c ab  bc  ca 2 2 2 1 1 1 2007 9 2007  2       670 a  b  c ab  bc  ca ab  bc  ca ab  bc  ca  a  b  c  2 2 2 a  b  c 2 3 Bài 32: Cho a, b, c là các số thực dương thay đổi thỏa mãn: a  b  c  3 . Tìm giá trị nhỏ nhất của biểu thức ab  bc  ca P  a 2  b2  c 2  a 2b  b2c  c 2a Giải: 3(a2 + b2 + c2) = (a + b + c)(a2 + b2 + c2) = a3 + b3 + c3 + a2b + b2c + c2a + ab2 + bc2 + ca2 Mà a3 + ab2  2a2b ;b3 + bc2  2b2c;c3 + ca2  2c2a Suy ra 3(a2 + b2 + c2)  3(a2b + b2c + c2a) > 0 ab  bc  ca 9  (a 2  b2  c 2 ) Suy ra P  a  b  c  2 2 2 2 Pa b c  2 2 2 a  b2  c 2 2(a 2  b2  c 2 ) t = a2 + b2 + c2, với t  3. 9t t 9 t 1 3 1 Suy ra P  t       3   4  P  4 a=b=c=1 2t 2 2t 2 2 2 2 Bài 33 Ch x,y,z là các số thực dương thỏa mãn x+y+z = 1. tìm giá trị nhỏ nhất của 1 1 1 P=   16 x 4 y z Giải: 1 1 1  1 1 1  y x   z x   z y  21 P=     x  y  z          16x 4 y z  16x 4 y z   16 x 4 y   16 x z   4 y z  16 y x 1 z x 1 z y   có =khi y=2x;   khi z=4x;   1 khi z=2y =>P  49/16 16 x 4 y 4 16 x z 2 4y z Min P = 49/16 với x = 1/7; y = 2/7; z = 4/7 Bài 34 4 5 Cho hai số thực dương x, y thỏa mãn:   23 x y 6 7 Tìm giá trị nhỏ nhất của biểu thức: B  8x   18y  x y Giải: 6 7  2  2 4 5 B  8x   18y    8x    18y        8  12  23  43 x y  x  y x y 1 1 1 1 Dấu bằng xảy ra khi  x; y    ;  .Vậy Min B là 43 khi  x; y    ;   2 3  2 3 Bài 35 Nguoithay.vn 8
  9. Nguoithay.vn Cho x, y. z là ba số thực thuộc đoạn [1;2] và có tổng không vượt quá 5. Chứng minh rằng x2 + y2 + z2  9 Gải: 1  x  2  x  1  0 và x  2  0  (x  1)(x  2)  0  x 2  3x  2 Tương tự y 2  3y  2 và z 2  3z  2  x + y + z  3( x + y +z) – 6  3. 5 – 6 = 9 2 2 2 Bài 36 Cho a,b,c là các số thuộc  1; 2 thỏa mãn điều kiện a2+b2+c2 = 6. Chứng minh rằng a bc  0. Giải:  a  1 a  2   0  a 2  a  2  0; b2  b  2  0; c 2  c  2  0  a  b  c  a 2  b2  c 2  6  0 Bài 37 Cho các số dương a,b,c thỏa mãn a  b  c  2 . Chứng minh rằng: 1 1 1 97 a 2  2  b2  2  c 2  2  b c a 2 Giải: 2  9 1   2 81  2 1  1 4  9  1.a  .   1   a  2   a  2   a  ; 2  4 b  16  b  b 97  4b  cộng các vế lại 1 4  9  1 4  9  b  2  2 b  ; c  2  2 c   c 97  4c  a 97  4a  Bài 38 Cho tam giác có ba cạnh lần lượt là a,b,c và chu vi là 2p. Chứng minh rằng p p p   9 p a p b p c Giải: p p p 1 1 1 9 9    9 hay     p a p b p c p  a p b p c p a  p b  p c p Bài 39 Cho a,b,c là độ dài ba cạnh của một tam giác có chu vi bằng 6. Chứng minh rằng: 3(a 2  b2  c 2 )  2abc  52 Giải: 8 abc  (a  b  c)(a  b  c)(a  b  c)  (6  2a)  6  2b  6  2c   abc  24   ab  bc  ac  3 16  36  (a  b  c )  2 2 2 8  2abc  48     (a 2  b 2  c 2 )  2abc  48 (1) 3  2  3 a 2  b2  c2  a  2  b  2   c  2 0  4 (2) (1)and(2)  dpcm 2 2 2 3 Có chứng minh được 3(a 2  b2  c 2 )  2abc  18 hay không? Bài 40 Nguoithay.vn 9
  10. Nguoithay.vn Cho a, b, c là độ dài 3 cạnh của một tam giác có chu vi bằng 2. Tìm giá trị nhỏ nhất của biểu thức P  4 ( a  3 3 3 bc  )1 5abc . Giải: Có a  2 2 a  (b c)2 (a  bc) (a  b c) (1) , b  2 2 b (c  a 2 ) ( b  c  a)(b c a) (2)        (3) . Dấu ‘=’ xảy ra abc 2 2 2 c ca ( b ) (c a b)( c a b) Do a,b,c là độ dài 3 cạnh của tam giác nên các vế của (1), (2), (3) đều dương. Nhân vế với vế của (1), (2), (3) ta có : a b  ca ( bc)( b c a)( c a  b)(*) Từ a  b  c  2 nên (*)  abc (2 2a)(2 2 b)( 2  2c) 8  8(ab  ca )8 (b  bc c a) 90 abc  8  9 abc  8( a b bc  c a ) 0 9 a bc 8 ( a b  bc c a ) 8 (*) Ta có a 3  b3 c3 () a  b c 3 3()a b c (ab  bc c a) 3a bc  86(a b bc c a) 3 abc Từ đó 4 (a 3  b3  c3 ) 15 abc 27ab c  2 4(ab  b cca ) 32 3 9ab c8(a b bc ca) 3 2(**) Áp dụng (*) vào (**) cho ta 4 (a  3 3 3 b  c )1 5ab c 3. (8)3 28 2 Dấu “=” xảy ra khi và chỉ khi abc . 3 2 Từ đó giá trị nhỏ nhất của P là 8 đạt được khi và chỉ khi abc 3 Bài 41 Cho a, b, c là độ dài 3 cạnh của một tam giác có chu vi bằng 1. Chứng minh rằng 2 1  a3  b3  c3  3abc  . 9 4 Giải: *P  a 3  b3  c3  3abc Ta có a 3  b3  c3  3abc  (a  b  c)(a 2  b 2  c 2  ab  bc  ac)  a 3  b3  c3  3abc  (a 2  b 2  c 2  ab  bc  ac) (1) có abc  (a  b  c)(a  b  c)(a  b  c )  (1  2a)(1  2b)(1  2c)  2 8 1  4(ab  bc  ca )  8abc  6abc    ab  bc  ca  (2) 3 3 2 5 (1)and(2)  a 3  b3  c3  3abc  a 2  b 2  c 2    ab  bc  ca  3 3  1  a 2  b2  c2 P1 mà ab  bc  ca  2 6 a 2   b2  c2  1 6 2 2 2  1  1  1 1 1 1 1 2 a    b    c    0  a  b  c   P  .   2 2 2  3  3  3 3 6 3 6 9 Nguoithay.vn 10
  11. Nguoithay.vn *P  a 3  b3  c3  3abc abc  (a  b  c)(a  b  c)(a  b  c)  (1  2a)(1  2b)(1  2c)  1  4(ab  bc  ca)  8abc  0 1  ab  bc  ca)  2abc  (3) 4 P  a 3  b3  c3  3abc  (a  b  c)(a 2  b 2  c 2  ab  bc  ac)  6abc  a 2  b 2  c 2  ab  bc  ac  6abc   a  b  c   3  ab  bc  ca   6abc 2 1 1  1  3  ab  bc  ca  2abc   1  3.  4 4 Bài 42 Cho ba số dưỡng,y,z thỏa mãn x+y+z =6 . Chứng minh rằng: x 2  y 2  z 2  xy  yz  zx  xyz  8 Giải: Chứng minh được xyz    x  y  z  x  y  z  x  y  z   (6  2 x)(6  2 y )(6  2 z )  216  72( x  y  z )  24( xy  yz  zx)  8xyz 8  xyz  24  ( xy  yz  zx) (1) 3 mà  x  y  z   9  x 2  y 2  z 2  2xy  2 yz  2xz  9 2  x 2  y 2  z 2  xy  yz  xz  36  3xy  3 yz  3xz (2) 8 Nên xyz  x 2  y 2  z 2  xy  yz  xz   24  ( xy  yz  zx)+ 36  3xy  3 yz  3xz 3 1  xyz  x 2  y 2  z 2  xy  yz  xz   12  ( xy  yz  zx) mà  x  y  z   3( xy  yz  zx) 2 3 1  x  y  z 2 36  xyz  x  y  z  xy  yz  xz   12  . 2 2 2  12  8 3 3 9 Bài 43 Cho a  1342; b  1342 . Chứng minh rằng a2  b2  ab  2013  a  b  . Dấu đẳng thức xảy ra khi nào? Giải: Ta sẽ sử dụng ba kết quả sau:  a 1342  b  1342  0;  a  1342 b  1342  0; a  1342  b  1342  0 2 2 Thật vậy: Nguoithay.vn 11
  12. Nguoithay.vn  a  1342    b  1342   0  a 2  b2  2.1342. a  b   2.13422  0 2 2 (1)  a  1342  b  1342   0  ab  1342a  1342b  1342  0 2 (2)  a 2  b 2  2.1342.  a  b   2.13422  ab  1342a  1342b  13422  0  a 2  b 2  ab  3.1342.  a  b   3.13422  2.2013.  a  b   3.13422  2013.  a  b   2013.  a  b   2.2013.1342  2013.  a  b   2013.  a  b  1342  1342   2013. a  b  Bài 44 Tìm giá trị nhỏ nhất của biểu thức: A   x  1   x  3  6  x  1  x  3 4 4 2 2 Giải: Cách 1: Cách 2 : A   x  1   x  3  6  x  1  x  3 4 4 2 2 2 A   x  1   x  3   4  x  1  x  3 2 2 2 2   A   2x 2  8x  10   4  x 2  4x  3  2 2 A   2( x  2) 2  2   4  ( x  2) 2  1 2 2 A  4( x  2) 4  8( x  2) 2  4  4( x  2) 4  8( x  2) 2  4 A  8( x  2) 4  8  8 Bài 45: Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng: ab bc ca 1    c 1 a 1 b 1 4 Giải: Nguoithay.vn 12
  13. Nguoithay.vn Bài 46 Cho x,y,z là ba số thực dương thỏa mãn điều kiện xyz=1. Chứng minh rằng: 1 1 1   1 1 x  y 3 3 1  y  z 1  z 3  x3 3 3 Giải: x 2  y 2  2xy   x  y   x 2  y 2   2xy  x  y   x 3  y 3  xy  x  y  1 1  1  x 3  y 3  xy  x  y  z    1 x  y 3 3 xy  x  y  z  1 z 1 x 1 y   ;  ;   dpcm 1 x  y 3 3 x  y  z 1 y  z 3 3 x  y  z 1 z  x 3 3 x yz Bài 47 Cho a,b là các số thực dương. Chứng minh rằng : ab  a  b   2a b  2b a 2 2 Giải: ab  1  1  1   a  b    a  b   a  b     a  b    a     b     2 ab  a  b   2a b  2b a 2 2  2  4  4  Bài 48 Cho ba số thực a,b,c thỏa mãn điều kiện: 1 1 1   1 1  8a 3 1  8b3 1  8c3 Giải: Nguoithay.vn 13
  14. Nguoithay.vn 1 1 1 2 1    2  2  2a  1  4a 2  2a  1 2a  1  4a  2a  1 4a  2 2a  1 2 1  8a 3 2 1 1 1 1 ;  ;  1  8b3 2b  1 1  8c3 2c  1 2 2 1 1 1 9  VT  2  2  2  2 1 2a  1 2b  1 2c  1 2a  1  2b 2  1  2c 2  1 Bài 49 a 3 b3 c 3 Với a,b,c là ba số thực dương . Chứng minh rằng :    a 2  b2  c 2 b c a Giải: Cách 1: a 3 b3 c 3 a 4 b 4 c 4  a  b  c   a 2  b 2  c 2  a 2  b 2  c 2  2 2 2 2         a 2  b2  c 2 b c a ab bc ca ab  bc  ca ab  bc  ca Cách 2 a3 3 3  ab  2a ;  bc  2b ;  ca  2c 2  VT  2  a 2  b2  c 2   (ab  bc  ca)  a 2  b 2  c 2 2 b 2 c b c a Bài 50 Cho x,y,z là ba số thực dương thỏa mãn xyz = 1. Chứng minh rằng: x2 y2 z2 3    y 1 z 1 x 1 2 Giải: x2 y 1 y2 z 1 z2 x 1 3 3 3 3 3   x;   y;   z  VT   x  y  z    .3   y 1 4 z 1 4 x 1 4 4 4 4 4 2 Nguoithay.vn 14
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2