intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt Luận án tiến sĩ Kỹ thuật: Ứng dụng lý thuyết CFD (Computational Fluid Dynamics) xác định sức cản tàu cá vỏ gỗ Việt Nam

Chia sẻ: Tỉ Thành | Ngày: | Loại File: PDF | Số trang:28

99
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu chung của đề tài "Ứng dụng lý thuyết CFD (Computational Fluid Dynamics) xác định sức cản tàu cá vỏ gỗ Việt Nam" là nghiên cứu ứng dụng lý thuyết động lực học lưu chất để xác định sức cản của các mẫu tàu cá vỏ gỗ theo mẫu truyền thống của Việt Nam.

Chủ đề:
Lưu

Nội dung Text: Tóm tắt Luận án tiến sĩ Kỹ thuật: Ứng dụng lý thuyết CFD (Computational Fluid Dynamics) xác định sức cản tàu cá vỏ gỗ Việt Nam

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC NHA TRANG ______________________________________ LÊ VĂN TOÀN ỨNG DỤNG LÝ THUYẾT CFD (COMPUTATIONAL FLUID DYNAMICS) XÁC ĐỊNH SỨC CẢN TÀU CÁ VỎ GỖ VIỆT NAM Ngành đào tạo: Kỹ thuật cơ khí động lực Mã số: 62520116 TÓM TẮT LUẬN ÁN TIẾN SĨ KHÁNH HÒA - 2017
  2. Công trình được hoàn thành tại Trường Đại học Nha Trang Người hướng dẫn khoa học: PGS.TS. Trần Gia Thái Phản biện 1: PGS. TS. Nguyễn Đức Ân Phản biện 2: PGS. TS. Phan Anh Tuấn Phản biện 3: PGS. TS. Đỗ Đức Lưu Luận án được bảo vệ tại Hội đồng đánh giá luận án cấp trường họp tại Trường Đại học Nha Trang vào hồi ……… giờ, ngày … tháng … năm 2017 Có thể tìm hiểu luận án tại: Thư viện Quốc gia và Thư viện Trường Đại học Nha Trang
  3. MỞ ĐẦU 1. LÝ DO LỰA CHỌN ĐỀ TÀI Với 3,000 km bờ biển, thủy sản đã trở thành một trong các ngành kinh tế mũi nhọn đóng góp quan trọng vào sự phát triển ổn định và bền vững kinh tế - xã hội của đất nước. Tính đến giữa năm 2016, đội tàu khai thác hải sản nước ta đã đạt đến gần 120,000 tàu nhưng hầu hết là tàu vỏ gỗ cỡ nhỏ, đóng theo kinh nghiệm dựa vào mẫu tàu truyền thống, không được tính toán cụ thể nên trong nhiều trường hợp, các mẫu tàu đã không đảm bảo được các tính năng hàng hải cần thiết, nhất là trong điều kiện thời tiết không thuận lợi. Trong thời gian gần đây, nhà nước đã có nhiều chủ trương, chính sách nhằm mục tiêu phát triển bền vững và hiện đại hóa đội tàu đánh cá cho ngang tầm với nhiệm vụ mới. Do đó vấn đề đặt ra là cần nghiên cứu thiết kế các mẫu tàu cá phù hợp nghề khai thác, hình dạng tối ưu để giảm sức cản nhằm nâng cao mức độ an toàn và hiệu quả đánh bắt. Vì lý do đó, bài toán nghiên cứu xác định chính xác sức cản các mẫu tàu đánh cá vỏ gỗ ở nước ta hiện nay có vai trò và ý nghĩa quan trọng, đồng thời mang tính chất cấp thiết, nhất là trong bối cảnh vùng Biển đông đất nước đang có nhiều biến động như hiện nay. Theo cách truyền thống, thường có hai cách tiếp cận chính trong nghiên cứu giải quyết bài toán xác định sức cản tàu thủy là nghiên cứu lý thuyết và nghiên cứu thực nghiệm nhưng chúng đều tồn tại những nhược điểm lớn nên rất hạn chế về khả năng ứng dụng. Trong những năm gần đây, cùng với sự phát triển mạnh mẽ của phương pháp tính và kỹ thuật máy tính, tính toán động lực học lưu chất (Computional Fluid Dynamíc - CFD) đã trở thành phương pháp nghiên cứu hiệu quả trong nhiều lĩnh vực kỹ thuật nói chung, đặc biệt là trong lĩnh vực kỹ thuật tàu thủy nói riêng để giải nhiều bài toán phức tạp như tính toán thiết kế tối ưu, kiểm nghiệm, dự báo kết quả nghiên cứu, mô phỏng… Phân tích sức cản dựa trên mô phỏng CFD cũng đã trở thành một yếu tố quyết định trong việc phát triển hình dạng các mẫu tàu mới, hiệu quả kinh tế và thân thiện với môi trường. Từ những trình bày trên đây, chúng tôi đã lựa chọn cách tiếp cận nghiên cứu sức cản tàu theo hướng nghiên cứu lý thuyết dựa trên cơ sở lý thuyết CFD với tên đề tài là: “Ứng dụng lý thuyết CFD (Computational Fluid Dynamics) xác định sức cản tàu cá vỏ gỗ Việt Nam” 1
  4. 2. Ý NGHĨA KHOA HỌC VÀ Ý NGHĨA THỰC TIỄN CỦA ĐỀ TÀI Kết quả nghiên cứu của đề tài bước đầu có những đóng góp quan trọng nhất định, cả về mặt khoa học và thực tiễn, cụ thể như sau. 2.1. Ý nghĩa khoa học Về mặt khoa học, đề tài đã đóng góp được những kết quả mới cụ thể như sau: - Xây dựng cơ sở khoa học, cùng với giá trị những thông số cần thiết cho việc ứng dụng lý thuyết tính toán động lực học lưu chất CFD trong xác định sức cản của loại tàu có kích thước bé, chạy chậm, có đoạn thân ống ngắn nói chung và các mẫu tàu cá vỏ gỗ theo mẫu dân gian truyền thống của Việt Nam nói riêng. - Mô phỏng chính xác hình ảnh trường dòng lưu chất chảy xung quanh thân tàu và hiện tượng thủy động lực học xảy ra khi tàu cá chuyển động trên nước tĩnh. Trên cơ sở đó, giải thích tường minh về sức cản áp suất, qui luật và tỉ trọng của hai thành phần sức cản chính có trong sức cản toàn bộ của tàu thông dụng là sức cản do tính nhớt chi phối Rv và sức cản do áp suất chi phối Rp. - Cơ sở để xây dựng công thức tính sức cản phù hợp cho đội tàu cá Việt Nam. - Cơ sở lý thuyết và khoa học để giải quyết nhiều bài toán vẫn còn đang tồn tại trong lĩnh vực tàu thuyền nghề cá ở nước ta hiện nay, đặc biệt là các bài toán về thủy động lực học và tối ưu hóa đường hình tàu. 2.2. Ý nghĩa thực tiễn Về mặt ý nghĩa thực tiễn, đề tài đã đóng góp được những kết quả cụ thể như sau: - Việc xác định được chính xác giá trị sức cản sẽ cho phép phân tích, đánh giá và xây dựng công thức tính sức cản phù hợp với tàu cá vỏ gỗ ở nước ta hiện nay. Trên cơ sở đó, có thể tính toán, lựa chọn được máy chính phù hợp khi thiết kế, góp phần quan trọng trong việc nâng cao mức độ an toàn và hiệu quả kinh tế - kỹ thuật của đội tàu cá vỏ gỗ ở nước ta hiện nay. - Sử dụng làm tài liệu giảng dạy và nghiên cứu trong lĩnh vực tàu thuyền nghề cá. - Khuyến cáo tốc độ khai thác hợp lý và tốc độ giới hạn trong tính toán thiết kế và sử dụng tàu cá. 2
  5. 3. MỤC TIÊU, ĐỐI TƯỢNG, PHẠM VI VÀ PHƯƠNG PHÁP NGHIÊN CỨU 3.1. Mục tiêu nghiên cứu Mục tiêu chung của đề tài là nghiên cứu ứng dụng lý thuyết động lực học lưu chất để xác định sức cản của các mẫu tàu cá vỏ gỗ theo mẫu truyền thống của Việt Nam. 3.2. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu chính là sức cản của các mẫu tàu đánh cá vỏ gỗ Việt Nam. Với đối tượng nghiên cứu trên, nội dung nghiên cứu của đề tài giới hạn trong phạm vi: - Tàu làm việc ở chế độ bơi, chuyển động thẳng đều trong nước tĩnh, không chịu tác động bởi sóng biển và độ sâu không hạn chế. - Lưu chất sử dụng trong mô phỏng có tính chất nhớt, không nén được, đồng chất. 3.3. Phương pháp và nội dung nghiên cứu Sử dụng phương pháp lý thuyết, bắt đầu từ việc phân tích đặc điểm hình học tàu tính toán và bản chất vật lý bài toán mô phỏng dòng lưu chất chuyển động quanh tàu, từ đó áp đặt các giả thiết và điều kiện ràng buộc vật lý đối với đối tượng khảo sát mới, trong trường hợp này là các mẫu tàu đánh cá vỏ gỗ theo mẫu truyền thống của Việt Nam, nhằm mục tiêu đưa bài toán về mô hình toán và các điều kiện tính sát thực tế và khả thi. Trên cơ sở đó, xây dựng thuật toán và viết chương trình giải bài toán xác định sức cản, đồng thời sử dụng phương pháp tính đúng dần, cùng với số liệu thử nghiệm làm cơ sở để xác định các thông số của mô hình và lời giải CFD phù hợp đối tượng tàu tính toán. Với mục tiêu trên, luận án gồm các nội dung nghiên cứu cụ thể như sau. - Phân tích mô hình tính và phương pháp giải bài toán mô phỏng dòng lưu chất bao xung quanh thân tàu chuyển động trong nước tĩnh. - Nghiên cứu xây dựng mô hình tính và lựa chọn phương pháp giải phù hợp với đối tượng tàu đang tính. - Xây dựng giải thuật và viết chương trình tính bằng mã nguồn mở OpenFOAM. - Ứng dụng mô phỏng dòng lưu chất và tính sức cản cho các mẫu tàu thực nghiệm. - Phân tích và so sánh kết quả nghiên cứu với kết quả thực nghiệm để xác định các thông số của lời giải CFD phù hợp với đối tượng tàu tính toán. 3
  6. Chương 1: TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU 1.1. ĐÁNH GIÁ CHUNG Từ việc tổng quan các công trình nghiên cứu tính sức cản bằng phương pháp CFD trình bày trong luận án, cho phép chúng tôi rút ra một số nhận xét cụ thể như sau: (1) Cùng với sự phát triển của khoa học kỹ thuật và máy tính, phương pháp tính CFD trong tính toán thủy động lực học nói chung và xác định sức cản tàu nói riêng cũng có sự phát triển mạnh mẽ, điển hình là sự phát triển từ phương pháp số của Michell, cho đến phương pháp phần tử biên BEM, Panel và hiện là phương pháp RANS. Các phương pháp như Mitchel, BEM, Panel thường sử dụng mô hình rối k-e nên có độ chính xác thấp vì xem lưu chất không có độ nhớt, phương trình chuyển động của dòng lưu chất được đưa về dạng hàm thế của tốc độ theo phương trình Laplace. Các nghiên cứu gần đây dùng phương trình RANS (Reynolds Average Equations) kết hợp mô hình rối SST k-w, kết hợp hai mô hình rối tiêu chuẩn là k-w và k-e, cho kết quả và lời giải phù hợp phương pháp thể tích hữu hạn (FVM) khi rời rạc hóa miền tính toán cho các tàu chạy chậm với đặc trưng xuất hiện dòng xoáy mạnh (2) Mẫu tàu tính toán thường là tàu mảnh (tàu Wigley), tàu hàng có đoạn thân ống dài, mạn thẳng, hông tròn, kết cấu mũi quả lê như DTMB 5415 (Mỹ), KCS (Hàn Quốc). Chưa có công trình thực hiện đối với loại tàu kích thước bé, đoạn thân ống ngắn, mũi thẳng, tốc độ chậm, tương tự mẫu tàu cá vỏ gỗ truyền thống của Việt Nam. (3) Các công trình nghiên cứu trước đây thường sử dụng những ngôn ngữ lập trình khá mạnh như Fotran, Python, STAR-CCM+, MathLab hoặc các ngôn ngữ khác. Thời gian gần đây thường ứng dụng lập trình trên mã nguồn mở OpenFOAM để giải bài toán mô phỏng động lực học tàu như tính sức cản, sea-keeping, tối ưu hóa.. (4) Hầu hết các công trình nghiên cứu đều trình bày dưới dạng kết quả cuối cùng ít trình bày phương pháp giải, cũng như giá trị cụ thể của những thông số cần thiết khi giải các bài toán CFD, ví dụ thông số đầu vào, các hệ số xác định mô hình rối, kích thước không gian miền tính toán, lưới chia... phù hợp với các tàu tính toán. Các chương trình giải các bài toán CFD nếu có công bố cũng ít khi chạy được. 4
  7. 1.2. ĐỊNH HƯỚNG NGHIÊN CỨU Từ những phân tích và nhận xét nêu trên, chúng tôi đã rút ra được các định hướng trước mắt khi nghiên cứu giải quyết nội dung bài toán đặt ra trong luận án như sau: (1) Chọn tàu tính toán là các mẫu tàu đánh cá vỏ gỗ truyền thống của Việt Nam, thuộc loại tàu chưa thấy có trong bất kỳ nghiên cứu tính sức cản bằng CFD nào. Mặc dù logic của quá trình tính toán không thay đổi nhưng có thể với những đặc điểm hình học khác đặc điểm hình học của mẫu tàu chở hàng thông thường, đặc biệt là tàu lại thường xuyên chạy ở tốc độ thấp, tương ứng giá trị số Fn bé, do đó phương pháp thực hiện và kết quả tính có thể sẽ có nhiều điểm khác biệt so với các nghiên cứu hiện nay. (2) Nghiên cứu phương pháp xây dựng và kiểm tra độ chính xác của mô hình 3D nhằm đảm bảo độ chính xác của mô hình hình học vỏ tàu và kết quả tính toán, cơ sở để có thể ứng dụng đối với các mẫu tàu khác. (3) Lựa chọn mô hình rối SST k-w để mô phỏng dòng lưu chất bao xung quanh tàu và dựa trên cơ sở đó xác định giá trị của các thông số cần thiết của mô hình rối bao gồm các hệ số rối k, w và cường độ rối I phù hợp với đối tượng tính toán. Đặc biệt, xây dựng hàm điều khiển (hàm trộn) quá trình kết hợp hai mô hình rối tiêu chuẩn k-w và k-e để đảm bảo phản ánh đúng bản chất của các dòng chảy trong dòng lưu chất chảy sát tường (bề mặt vỏ tàu), chảy bên trong lớp biến và dòng chảy tự do bên ngoài lớp biên đối với các tàu chạy chậm. (4) Xác định các thông số cần thiết của quá trình tính toán sức cản tàu bằng CFD như kích thước lưới chia bề mặt, kích thước của không gian miền tính toán…, cùng với những giải pháp kiểm tra, nâng cao độ chính xác của kết quả tính toán ngay trong từng bước tính toán. (5) Ứng dụng các phương pháp và thuật toán giải các phương trình RANS hiện có và dựa trên cơ sở đó nghiên cứu sử dụng mã nguồn mở OpenFOAM để viết chương trình giải bài toán tính sức cản cho tàu tính toán và so sánh với kết quả thử nghiệm để tiến hành điều chỉnh và xác định lại các thông số cần thiết của bài toán CFD nhằm đảm bảo sự phù hợp với đối tượng tàu tính toán. 5
  8. Chương 2: CƠ SỞ LÝ THUYẾT 2.1. SỨC CẢN TÀU THỦY Khi chuyển động đều trong nước tĩnh, tàu chịu tác dụng của sức cản không khí Rkk và sức cản môi trường nước RT, nhiều khi được hiểu đó là sức cản toàn bộ của con tàu. Để thuận tiện trong nghiên cứu, tùy theo nguyên nhân xuất hiện và các bản chất vật lý, có thể chia sức cản nước theo nhiều cách, phổ biến là phân chia như sơ đồ hình 2.1. Sức cản của môi trường nước RT Sức cản dư RR Sức cản ma sát của lớp biên mỏng RFo (tấm phẳng tương đương) Ảnh hưởng hình dạng đến ma sát ở lớp biên Sức cản áp suất RP Sức cản ma sát RF Sức cản sóng RW Sức cản áp suất nhớt RPV do xoáy Sức cản tạo sóng Sức cản sóng vỡ RWM RWB Sức cản nhớt RV Sức cản toàn bộ RT Hình 2.1. Sơ đồ các thành phần sức cản của nước tác dụng lên tàu Về lý thuyết, công thức tính các thành phần sức cản tàu có dạng chung như sau: rU 2 R = CR W (2.1) 2 CR – hệ số sức cản ; U – vận tốc tàu, m/s ; r - khối lượng riêng của chất lỏng KG.s2/m4 W - diện tích phần vỏ tàu dưới nước (hay diện tích mặt ướt), m2. 6
  9. 2.2. CƠ SỞ LÝ THUYẾT CFD 2.2.1. Các phương trình chủ đạo Hầu hết các dòng lưu chất hiện nay là dòng chất lỏng Newton ba chiều có độ nhớt, không nén và ở trạng thái ổn định nên lời giải phương trình năng lượng không cần nữa. Do đó các phương trình chủ đạo quản lý dòng lưu chất bao xung quanh thân tàu chỉ gồm phương trình liên tục và phương trình bảo toàn động lượng dưới dạng đơn giản như sau. • Phương trình liên tục ¶r + rÑ.U = 0 (2.2) ¶t • Phương trình bảo toàn động lượng DU r = - Ñp + µÑ 2 U + rg (2.3) Dt trong đó: ρ - mật độ chất lỏng, là hàm của các tọa độ (x, y, z) và thời gian t: r = r(x,y,z,t) U - vectơ vận tốc, được xác định theo các vector đơn vị i, j, k của hệ tọa độ Descartes theo công thức. U = u.i + v.j + w.k (2.4) với các thành phần vận tốc xác định theo các hướng tương ứng như sau: u = u(x,y,z,t) ; v = v(x,y,z,t) ; w = w(x,y,z,t) Ñ - toán tử vector (thuật ngữ trong tính toán CFD gọi là “del” hoặc “nabla”), được định nghĩa trong hệ tọa độ Descartes theo công thức chung sau: ¶ ¶ ¶ Ñ = i + j + k (2.5) ¶x ¶y ¶z DU - ký hiệu của đạo hàm thực được xác định theo công thức: Dt DU ¶U = + U.ÑU (2.6) Dt ¶t 7
  10. 2.2.2. Phương trình RANS (Reynolds Average Navier-Stokes Equations) Hai phương trình (2.2) và (2.3) kết hợp lại thành hệ phương trình Navier-Stokes dùng mô phỏng dòng lưu chất nhớt, không nén gồm 4 phương trình với 4 ẩn u, v, w, p. Do chuyển động của dòng chảy rối không ổn định nên để giải được hệ phương trình này thường sử dụng một số phương pháp số như LES, DNS… nhưng phổ biến nhất là phương pháp Navier-Stokes Reynolds trung bình (RANS) được xây dựng trên cơ sở tách giá trị của các biến dòng lưu chất thành thành phần trung bình và thành phần biến động, sau đó thay vào hệ phương trình trên, sau một số biến đổi nhận được hệ phương trình RANS dưới dạng tổng quát như sau: ìÑ.U = 0 ï í dU (2.7) ïr = - Ñ p + µÑ 2 U + rg î dt trong đó: p - trường áp lực trung bình; r - mật độ chất lưu; U - vector vận tốc trung bình; g - gia tốc trọng trường. 2.2.3. Mô hình dòng chảy rối Do trong các phương trình RANS xuất hiện thêm 6 biến số mới tương ứng với 6 thành phần ứng suất rối Reynolds biểu diễn cho sự sự gia tăng vận tốc của dòng lưu chất nên để giải được cần bổ sung thêm phương trình rối để đóng kín hệ phương trình RANS. Có nhiều mô hình dòng chảy rối nhưng phổ biến nhất hiện nay là mô hình k-e và k-w. Hiện tại, mô hình k-ε và k-ω đã trở thành những mô hình tiêu chuẩn công nghiệp và được sử dụng rất phổ biến cho hầu hết các dòng lưu chất trong những bài toán kỹ thuật, Tuy nhiên khi ứng dụng cho dòng lưu chất chảy xung quanh bề mặt vỏ tàu đã nhận thấy, mô hình k-e khá mạnh nhưng lại it chính xác khi tính lớp biên, trong khi mô hình k-w tuy chính xác hơn mô hình k-e trong lớp biên gần tường và dự đoán tốt hơn dòng chảy có gradient áp lực bất lợi nhưng lại rất nhạy cảm đối với các giá trị của dòng chảy tự do. Do dó để đảm bảo chính xác hơn, Menter đề xuất mô hình SST k-w kết hợp hai mô hình, trong đó mô hình k-w sử dụng ở lớp biên, mô hình k-e sử dụng trong dòng chảy tự do. 8
  11. 2.3. THUẬT TOÁN GIẢI Đối với chất lỏng không nén được, nhiều chương trình CFD hiện nay thường dùng thuật toán SIMPLE để giải hệ phương trình RANS và mô hình phương trình dòng rối. Tuy nhiên gần đây thường sử dụng mã nguồn mở OpenFOAM với sự kết hợp của csac thuật toán SIMPLE và PISO để giải hệ các phương trình RANS. Mạc dù có nhiều ưu điểm nhưng thuật toán này vẫn chưa thấy ứng dụng trong ngành tàu vì thế trong luận án sẽ sử dụng thuật toán này để tính trường dòng bao quanh tàu. Trong mỗi bước thời gian, bài toán được giải bằng thuật toán SIMPLE, sau đó sử dụng thuật toán PISO để hiệu chỉnh việc điều chỉnh áp lực, nghĩa là thuật toán PISO được lồng ghép vào một bước tính toán của thuật toán SIMPLE. Trong mỗi bước thời gian, thuật toán này có thể được tóm tắt như sau (Số hiệu các phương trình, công thức trong thuật toán được lấy như trong luận án): 1. Tính vận tốc U * từ phương trình. (2.90) với áp lực P * từ bước thời gian trước. éæ H (U * ) ö ù 2. Tính xấp xỉ lượng chất lỏng chảy qua mặt ô F * = S .êçç r ÷ ú , điều này cần êëè a P ÷ø f ú û thiết để tính vế phải của phương trình áp lực (2.87). 3. Tính áp lực hiệu chỉnh P ** bằng cách giải phương trình. (2.87) với thông lượng vừa được xấp xỉ. 4. Hiệu chỉnh thông lượng mặt bằng cách giải phương trình (2.89) với giá trị áp lực mới P ** . 5. Tính toán giá trị áp lực mới P new trong mội ô tính toán dựa vào hệ số a P giống như trong thuật toán SIMPLE. ( P new = P * + a P P ** - P * ) 6. Chỉnh sửa vận tốc từ giá trị áp lực mới P new , sử dụng phương trình. (2.82). 7. Lặp lại các bước từ (2÷6) với số lần lặp bằng nCorrectors lần. 8. Kiểm tra sự hội tụ, nếu thỏa mãn thì chuyển sang bước thời gian tiếp theo, nếu không thỏa mãn thì lặp lại các bước 1-8 nOuterCorrectors lần. 9
  12. Sơ đồ thuật toán được diễn giải như hình bên dưới: Bắt đầu Ước đoán áp lực Tính vận tốc từ phương trình Tính xấp xỉ lượng chất lỏng chảy qua mặt ô: Tính áp lực hiệu chỉnh = lần Hiệu chỉnh thông lượng mặt Lặp nCorrectors SUf = Tính áp lực mới : Hiệu chỉnh áp lực mới : Bước thời Đúng Sai gian tiếp Kiểm tra hội tụ theo Hình 2.2. Sơ đồ thuật toán nghiên cứu 10
  13. Chương 3: KẾT QUẢ NGHIÊN CỨU 3.1. MẪU TÀU TÍNH TOÁN 3.1.1. Đặc điểm các mẫu tàu tính toán Các mẫu tàu dùng tính toán là mẫu tàu cá dân gian khu vực miền Trung Việt Nam có ký hiệu M1317A và M1319 đã được TS Nguyễn Quang Vĩnh, KS Nguyễn Đức Thọ thử nghiệm ở bể thử Đại học Kỹ thuật và Công nghiệp cá Kaliningrat (Liên Xô cũ). Trong thực nghiệm, hai mẫu tàu được chế tạo theo tỷ lệ đồng dạng hình học k = 1 : 7 . Các thông số hình học của các tàu ở tỷ lệ thực và ở tỷ lệ thử kéo mô hình trong bể thử được cho ở bảng 3.1. Bảng 3.1. Các thông số hình học của các mẫu tàu M1317A và M1319 ở tỷ lệ thực và ở tỷ lệ thử nghiệm kéo mô hình trong bể thử k = 1:7 M1317A M1319 Ký Đơn Các thông số Tỷ lệ Tỷ lệ Tỷ lệ Tỷ lệ hiệu vị 1:1 1:7 1:1 1:7 mạn thẳng, gẫy góc Đặc điểm hình học Dạng vỏ dưa nằm ở hông tàu Chiều dài toàn bộ LOA m 21.90 3.129 17.40 2.485 Chiều dài đường nước LPP m 18.55 2.650 14.29 2.041 Chiều dài giữa hai trụ LWL m 19.00 2.714 14.80 2.114 Chiều rộng lớn nhất Bmax m 4.48 0.640 3.88 0.554 Chiều rộng đường nước BWL m 4.48 0.640 3.14 0.448 Chiều cao mạn D m 1.90 0.271 1.50 0.214 Chiều chìm d m 1.23 0.175 0.74 0.105 2 Diện tích mặt ướt Ω m 95.06 1.940 45.08 0.92 Hệ số diện tích sườn giữa CM - 0.870 0.870 0.860 0.86 Hệ số đầy thể tích CB - 0.589 0.589 0.550 0.55 Hệ số đầy lăng trụ dọc CP - 0.677 0.677 0.639 0.639 Lượng chiếm nước D m3 61.17 0.178 19.51 0.057 Us hl/h 8.65 3.264 9.13 3.445 Tốc độ tàu U m/s 4.45 1.679 4.694 1.772 Số Froude Fn - 0.329 0.329 0.396 0.396 11
  14. 3.1.2. Kết quả thử nghiệm Kết quả thử nghiệm kéo các mô hình tàu trong bể thử để xác định sức cản được cho trong bảng 3.2 và hình 3.1. Bảng 3.2. Kết quả thử nghiệm kéo trên nước tĩnh và khi chuyển đổi sang tàu thật của các mô hình tàu M1317A và M1319 Mẫu M1317A (d = 1.23 m) Mẫu M1319 (d = 0.74 m) U Us RM Số Fn RH U Us RM Số Fn RH (m/s) (hl/h) (KG) (N) (m/s) (hl/h) (KG) (N) 0.712 3.664 0.214 0.139 756.6 0.629 3.240 0.097 0.140 268.6 0.951 4.896 0.532 0.186 1562.9 0.904 4.655 0.253 0.202 752.9 1.029 5.299 0.755 0.202 2327.9 1.166 6.005 0.447 0.260 1360.5 1.251 6.441 1.081 0.245 3135.3 1.369 7.049 0.765 0.306 2401.1 1.402 7.210 1.390 0.275 4341.4 1.460 7.515 0.896 0.326 2826.6 1.478 7.658 1.721 0.291 5435.0 1.553 7.996 1.077 0.347 3422.0 1.544 7.946 2.086 0.303 6659.5 1.587 8.172 1.130 0.354 3594.3 1.633 8.406 2.507 0.320 8058.5 1.652 8.505 1.283 0.369 3925.8 1.697 8.739 2.907 0.332 9397.0 1.666 8.579 1.297 0.372 4144.7 1.73 8.907 3.077 0.339 9962.9 1.772 9.125 1.920 0.396 6250.9 1.758 9.035 3.252 0.345 10548 1.807 9.304 1.702 0.404 4969.2 Hình 3.1. Đồ thị đường cong sức cản của các tàu M1317A và M1319 12
  15. 3.2. XÂY DỰNG MÔ HÌNH HÌNH HỌC VỎ TÀU 3.2.1. Xây dựng mô hình 3D Từ bản vẽ đường hình gốc, dựng lại đường hình của các mẫu tàu trong AutoCad, sau đó dựng mô hình 3D trong phần mềm thiết kế tàu AutoShip và kiểm tra thông số hình học nhằm đảm bảo độ chính xác của mô hình 3D ngay trong Autoship (Hình 3.2). Mẫu tàu M1317A Mẫu tàu M1319 Hình 3.2. Xây dựng mô hình hình học 3D trong AutoCad và AutoShip 3.2.2. Tạo file STL của bề mặt hình học vỏ tàu Viết code nhận diện tọa độ điểm hình học từ file mô hình 3D của mẫu tàu tính toán và xây dựng file *.stl (StereoLithography) mô tả bề mặt đối tượng ở dạng lưới tam giác, một hình thức rời rạc hình học vỏ tàu được dùng nhiều trong bài toán CFD (Hình 3.3). vertices ( (x1 y1 z1) // điểm0 (x2 y2 z2) // điểm 1 … // … (xn yn zn) // điểm n ) Hình 3.3. Code và mô hình tàu M1317A chia lưới tam giác theo dạng file *.stl 13
  16. 3.3. XÁC LẬP KHÔNG GIAN MIỀN TÍNH TOÁN Xác định kích thước hợp lý cho không gian miền tính đối với mẫu tàu cá khảo sát bằng phương pháp tính gần đúng dần, dựa trên cơ sở thực hiện tính toán mô phỏng với các vị trí biên khác nhau và tiến hành phân tích trường áp suất xuất hiện cho đến khi không thấy ảnh hưởng của các hiệu ứng biên hoặc tương tác tàu – nước gây ra. Kết quả xác định được vị trí các biên hợp lý cho các mẫu tàu đang khảo sát (Hình 3.4a), khác vị trí các biên theo khuyến nghị của Hội nghị bể thử quốc tế ITTC-2011 (Hình3.4b). 2LPP 4LPP 2LPP 1LPP Hướng chuyển động tàu 1LPP (a) (b) Hình 3.4. Vị trí của các biên tính toán theo (a) đề xuất và (b) ITTC-2011 Hình 3.5 biểu diễn sự biến động mặt thoáng nước bên ngoài tàu M1317A ở giá trị Fn = 0.404, nhận thấy nếu đặt vị trí các biên theo ITTC 2011 thì tính chất vật lý tại biên Inlet sẽ bị ảnh hưởng bởi sóng phản hồi do tàu tạo ra, ngược lại vị trí biên Outlet chỉ cần cách đường vuông góc lái khoảng 4Lpp thì đủ đáp ứng được tính chất vật lý biên Outlet. Bằng cách làm tương tự, chúng tôi cũng đã xác định được vị trí của biên Side nằm cách mặt phẳng đối xứng tàu một khoảng 2Lpp là hợp lý đối với đối tượng tàu cá đang tính. Hình 3.5. Kích thước miền tính toán thực tế 14
  17. 3.4. RỜI RẠC KHÔNG GIAN TÍNH TOÁN VÀ MÔ HÌNH HÌNH HỌC TÀU Quá trình xây dựng lưới chia bề mặt vỏ tàu trong OpenFOAM sẽ được thực hiện theo trình tự cụ thể như sau: - Nhập mô hình tàu đã chia lưới ở mục 3.2 vào OpenFOAM để xây dựng miền tính theo kích thước ở mục 3.3 và rời rạc bề mặt liên tục vỏ tàu thành xấp xỉ lưới chia hình tam giác có cùng định dạng lưới chia bề mặt ban đầu, sau đó nhúng vào miền tính toán. - Sử dụng hàm snappyHexMeshDict trong thư viện OpenFOAM với đoạn mã chương trình thực hiện việc rời rạc miền tính và mô hình hình học tàu đang tính, trong đó các nút lưới để liên kết miền tính với bề mặt tàu đều được gán biên wall là tường cứng tuyệt đối, không thấm nước như mô tả ở hình 3.6. blocks ( hex (0 1 2 3 4 5 6 7) (17 6 8) simpleGrading (1 1 0.05) hex (4 5 6 7 8 9 10 11) (17 6 50) simpleGrading (1 1 1) ……………. hex (20 21 22 23 24 25 26 27) (17 6 20) simpleGrading (1 1 5) ); Edges - Xử lý lưới chia khu vực gần tường để mô phỏng chính xác dòng rối và sức cản, đồng thời kiểm tra và đánh giá chất lượng của lưới chia thông qua các thông số gồm hệ số tường y+ và hệ số Courant (CR) để đảm bảo độ chính xác lưới chia. Hình 3.6. Mô hình tàu và miền tính toán sau khi rời rạc hóa 15
  18. 3.5. THIẾT LẬP CÁC ĐIỀU KIỆN BAN ĐẦU VÀ ĐIỀU KIỆN BIÊN Để mô phỏng dòng rối bằng mô hình SST k-w cần xác định các điều kiện ban đầu là hệ số động năng rối k, tiêu tán động năng rối w, tốc độ tiêu tán động năng rối e: 3 k k = (I .U )2 ; w = 10 U ; e = (3.1) 2 L pp L pp I - cường độ rối; U - vận tốc dòng , m/s ; Lpp - chiều dài hai đường vuông góc tàu, m. Ban đầu, tham khảo hai mẫu tàu chở hàng KCS và DTMB-5415 đã được công bố, chúng tôi chọn giá trị hệ số của các tàu này là k = 0.00015, w = 2.0000 để tính nhưng trường dòng lưu chất quanh các tàu bị bất ổn mạnh và lời giải không hội tụ (hình 3.7), trong đó hệ thống sóng bị vỡ và rối mạnh ngay khi còn khá xa khu vực tàu hoạt động. Hình 3.7. Trường dòng bất ổn và lời giải không hội tụ trước khi hiệu chỉnh Sau đó áp dụng phương pháp tính đúng dần như khi xác định vị trí biên ở mục 2.3, chúng tôi đề xuất chọn giá trị đại lượng cường độ rối I cho các tàu đang tính như sau: I = 0.050 với giá trị số Fn ≥ 0.3 ; I = 0.035 với giá trị số Fn < 0.3 Áp dụng các số liệu này chúng tôi nhận được hình ảnh trường dòng ổn định với lời giải hội tụ như mô tả trên hình 3.8. Hình 3.8. Trường dòng ổn định và lời giải hội tụ sau khi hiệu chỉnh 16
  19. Áp dụng các công thức nêu trên cho các tàu M1317A và M1319 đang nghiên cứu có thể xác định được điều kiện ban đầu về giá trị hệ số rối dùng thực hiện mô phỏng số ở các số Fn cụ thể cho các tàu M1317A và M1319 như cho ở bảng 3.3. Bảng 3.3. Giá trị các hệ số rối của tàu Đại M1317A M1319 lượng U 0.640 1.251 1.381 1.679 1.758 1.166 1.369 1.460 1.772 1.807 Fn 0.128 0.250 0.276 0.336 0.352 0.261 0.312 0.326 0.396 0.404 I 0.035 0.035 0.035 0.050 0.050 0.035 0.050 0.050 0.050 0.050 K 0.000753 0.002876 0.003504 0.010571 0.011590 0.002498 0.007028 0.007994 0.011775 0.012245 w 2.357895 4.608947 5.087895 6.185789 6.476842 5.514865 6.475000 6.905405 8.381081 8.546622 e 0.010107 0.019757 0.021810 0.037880 0.039662 0.023640 0.039651 0.042287 0.051323 0.052337 Bảng 3.4 và 3.5 là mô tả đặc tính và tính chất vật lý tại các biên Bảng 3.4. Đặc tính của biên Tên gọi Ký hiệu Tính chất biên Mặt trên cùng Top Type patch, faces Mặt lưu chất đi vào Inlet Type patch, faces Mặt lưu chất đi ra Outlet Type patch, faces Mặt bên Sides Type symmetryPlane, faces Mặt đáy Bottom Type symmetryPlane, faces Mặt phẳng đối xứng tàu MidPlane Type symmetryPlane, faces Vỏ tàu Hull Wall function Bảng 3.5. Tính chất vật lý chất lỏng tại biên Kí hiệu biên U p k, w Inlet Fixed value Gradient = 0 Fixed value Top Fixed value p = p¥ Gradient = 0 Bottom Fixed value p = p¥ Gradient = 0 Side Fixed value Gradient = 0 Gradient = 0 MidPlan Symmetry Outlet Gradient = 0 Hull U=0 Gradient = 0 Wall function 17
  20. 3.6. TÍNH TOÁN CHO CÁC MẪU TÀU THỰC NGHIỆM M1317A VÀ M1319 Phương trình chuyển động của dòng chất lỏng nhớt có dạng như sau time _ derivative #$"$ ! #convection $"$! #$"diffusion $ $!$ #source "! ¶f ò ¶t dV + ò Ñ.(Uf)dV = ò Ñ.(µÑf)dV + ò q fdV (3.2) V V V V Giải phương trình trên theo thuật toán đề xuất bằng mô đun mã có tên fvSchemes, lời giải được kết nối trong tập tin fvSolution, thực thi bởi bộ giải LTSInterFoam. Kết quả chạy chương trình nhận được phân bố trường dòng, lực và mômen thủy động, sức cản của các mẫu tàu tính toán như sau. 3.6.1. Kết quả tính toán trường dòng chất lỏng bao xung quanh tàu Kết quả tính trường dòng lưu chất cho các tàu M1317A ở Fn = 0.329 và tàu M1319 ở Fn = 0.396 được thể hiện ở các hình tiếp theo. Hình 3.9. Trường áp suât nước quanh tàu M1317A tại Fn = 0.329 Hình 3.10. Trường áp suât nước quanh tàu M1319 tại Fn = 0.396 18
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2