Tuyển chọn các bài toán hình học giải tích trong không gian
lượt xem 190
download
Tài liệu tham khảo về Tuyển chọn các bài toán hình học giải tích trong không gian...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tuyển chọn các bài toán hình học giải tích trong không gian
- Tuyển chọn các bài toán hình học giải tích trong không gian. Trong không gian với hệ tọa độ Oxyz cho hai điểm A( 3; 0; 2), B( 1; -1; 0) 1) và mặt phẳng ( α): x - 2y + 2z – 3 = 0. 1. Lập phương trình mặt phẳng ( β) đi qua A, B và vuông góc với ( α). 2. Tìm trên mặt phẳng ( α) điểm C sao cho ΔABC vuông cân tại B. Trong không gian với hệ tọa độ Oxyz cho 2) ì x + 2y - 3 = 0 ï mặt phẳng ( P): x + y + z = 0 và đường thẳng d1 : ï . í ï 3x - 2z - 7 = 0 ï î 1. Tính góc giữa mặt phẳng ( P) và đường thẳng d1. 2. Lập phương trình đường thẳng d2 đối xứng với d1 qua ( P). Trong không gian với hệ tọa độ Oxyz cho 3 điểm A( 1; 1; 0), B( 0; 2; 0), C( 0; 0; 3) 2). 1. Lập phương trình mặt phẳng ( P) qua gốc tọa dộ O và vuông góc với BC. Tìm tọa độ giao điểm của AC với mặt phẳng ( P). 2. Chứng minh ΔABC vuông. Lập phương trình mặt cầu ngoại tiếp tứ diện OABC. Trong không gian với hệ tọa độ Oxyz cho 4 điểm 4) A( 3; -2; -2), B( 3; 2; 0), C( 0; 2; 1) và D( -1; 1; 2). 1. Lập phương trình mặt cầu ( S) tâm A tiếp xúc với mặt phẳng ( BCD). 2. Tìm tọa độ tâm đường tròn ngoại tiếp ΔABC. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng ( P): x + y + z + 3 = 0 5) x- 3 y- 1 z- 1 x- 7 y- 3 z- 9 và hai đường thẳng d1 : , d2 : . = = = = -7 2 3 1 2 -1 1. Tìm tọa độ giao điểm A của đường thẳng d1 và mặt phẳng ( P). 2. Lập phương trình hình chiếu của d 2 theo phương song song với d 1 lên mặt phẳng ( P). Trong không gian với hệ tọa độ Oxyz cho điểm M( 1; 2; 3). Mặt phẳng 6) ( P) đi qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C. Lập phương trình mặt phẳng ( P) biết rằng: 1. Tứ diện O.ABC là hình chóp tam giác đều. 2. Thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Trong không gian với hệ tọa độ Oxyz cho hai điểm A( 0; 0; -3), B( 2; 0; 7) -1) và mặt phẳng ( P): 3x -8y + 7z – 1 = 0. 1. Lập mặt phẳng ( Q) qua A, B và tạo với mặt phẳng ( Oxz) góc α thỏa mãn 3 cosa = . 3 2. Tìm tọa độ của điểm C trên ( P) sao cho ΔABC đều. Bài tập được trích từ “ 20 Bộ đề Toán tổng hợp năm 2008”. 1 ThS. Đoàn Vương Nguyên.
- Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng 8) ì x+y=0 ì x + 3y - 1 = 0 ï ï d1 : ï và d 2 : ï . í í ï x- y+z+4 = 0 ï y+z- 2 = 0 ï ï î î 1. Lập phương trình hai mặt phẳng lần lượt chứa d1, d2 và song song với nhau. x yz 2. Lập phương trình đường thẳng cắt d1, d2 và song song với d 3 : ==. -3 2 7 Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng 9) ì x=0 ì x + y- 1= 0 ï ï d1 : ï và d 2 : ï . í í ï y + 3z - 3 = 0 ï ï z=0 ï î î 1. Tìm tọa độ hai điểm M, N lần lượt thuộc d1 và d2 sao cho MN ngắn nhất. 13 2. Lập phương trình mặt phẳng ( P) chứa d2 và tạo với d1 góc φ sao cho cosj = . 15 Trong không gian với hệ tọa độ Oxyz cho 10) ì x - 2y + z - 9 = 0 ï đường thẳng d : ï và điểm I( 1; 1; 1). í ï 2y + z + 5 = 0 ï î 1. Tìm tọa độ điểm K đối xứng với điểm I qua đường thẳng d. 2. Lập phương trình mặt cầu ( S) có tâm I cắt đường thẳng d tại A, B sao cho AB = 16. Trong không gian với hệ tọa độ Oxyz cho đường thẳng 11) ì x - my + z - m = 0 ï d :ï ï mx + y - mz - 1 = 0 m là tham số. , í ï î 1. Lập phương trình hình chiếu Δ của ( d) lên Oxy. 2. Chứng minh rằng khi m thay đổi, đường thẳng Δ luôn tiếp xúc với một đường tròn cố định trong mặt phẳng Oxy. Trong không gian với hệ tọa độ Oxyz cho 4 điểm 12) O( 0; 0; 0), A( 3; 0; 0), B( 0; 6; 0), C( 0; 0; 6). 1. Tính cosin của góc phẳng nhị diện [O, AB, C]. 2. Lập phương trình mặt cầu nội tiếp tứ diện OABC. Trong không gian với hệ tọa độ Oxyz cho hai điểm A( 6; 0; 0) và B( 0; 3; 13) 0) nằm trên mặt phẳng ( P): x + 2y - 3z – 6 = 0. 1. Lập phương trình đường thẳng nằm trong mặt phẳng ( P) và vuông góc với AB tại A. 2. Tìm tọa độ điểm C trên mặt phẳng ( P) sao cho ΔABC vuông cân tại A. Bài tập được trích từ “ 20 Bộ đề Toán tổng hợp năm 2008”. 2 ThS. Đoàn Vương Nguyên.
- 1. Trong không gian với hệ tọa độ Oxyz cho hai điểm A( 0; 0; 1) và B( 3; 14) 0; 0). Lập phương trình mặt phẳng ( P) đi qua A, B và tạo với mặt phẳng Oxz góc 600. 2. Tìm tập hợp tất cả các điểm Q trong không gian cách đều 3 điểm: M( 1; 1; 1), N( -1; 2; 0), K( 0; 0; 2). Trong không gian với hệ tọa độ Oxyz cho 15) x +1 y - 2 z - 2 hai điểm A( 1; 2; -1), B( 7; -2; 3) và đường thẳng d : . = = 3 -2 2 1. Chứng tỏ đường thẳng d và đường thẳng AB đồng phẳng. 2. Tìm tọa độ điểm M trên đường thẳng d sao cho tổng MA + MB ngắn nhất. Trong không gian với hệ tọa độ Oxyz cho 3 điểm A( 2; 0; 0), B( 0; 4; 0), C( 0; 0; 16) 2 2 2 1) và mặt cầu ( S) : x + y + z - 2x - 4y - 6z = 0. 1. Gọi H là hình chiếu của A lên BC. Tính thể tích tứ diện O.ABH. 2. Gọi giao điểm của ( S) với 3 trục tọa độ là M, N, P( khác O). Xác định tâm K của đường tròn ngoại tiếp ΔMNP. 17) Trong không gian với hệ tọa độ Oxyz cho 2 tia Ax và Bt vuông góc với nhau và nhận AB = a làm đoạn vuông góc chung. Lấy 2 điểm M Î Ax, N Î Bt sao cho AM = BN = 2a. 1. Tìm tâm I và tính theo a bán kính R của mặt cầu ngoại tiếp tứ diện ABMN. 2. Tính khoảng cách giữa hai đường thẳng AM và IB. Trong không gian với hệ tọa độ Oxyz cho 18) x y- 1 z- 2 đường thẳng d : = và mặt phẳng ( P): x + 3y + 2z + 2 = 0. = 1 2 1 1. Lập phương trình mặt phẳng chứa d và vuông góc với ( P). 2. Lập phương trình đường thẳng song song với ( P), đi qua điểm M( 2; 2; 4) và cắt d. Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng song song 19) ( P): 2x - 2y + 2z – 1 = 0, ( Q): 2x - 2y + 2z + 5 = 0 và điểm M( -1; 1; 1) ở giữa 2 mặt phẳng trên. Mặt cầu ( S) tâm I qua M và tiếp xúc với cả hai mặt phẳng đã cho. 1. Tính bán kính mặt cầu ( S). 2. Chứng tỏ rằng I thuộc đường tròn cố định ( C), tìm tâm và bán kính của ( C). _______________________________________________________________________ _ Bài tập được trích từ “ 20 Bộ đề Toán tổng hợp năm 2008”. 3 ThS. Đoàn Vương Nguyên.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tuyển tập các bài Toán Hình học lớp 9 ôn thi vào lớp 10
42 p | 3552 | 1207
-
Tuyển chọn các bài toán Hình học giải tích trong mặt phẳng
2 p | 1676 | 447
-
tuyển chọn các bài toán hình học phẳng trong đề thi học sinh giỏi các tỉnh, thành phố nắm 2010-2011
53 p | 424 | 81
-
Tuyển tập và hướng dẫn giải 230 bài toán Hình học không gian chọn lọc: Phần 1
195 p | 345 | 77
-
Cẩm nang cho mùa thi: Tuyển chọn 50 bài toán điển hình xác suất - Nguyễn Hữu Biển
20 p | 283 | 71
-
Tuyển tập và hướng dẫn giải 230 bài toán Hình học không gian chọn lọc: Phần 2
200 p | 248 | 59
-
Cẩm nang cho mùa thi: Tuyển chọn 50 bài toán điển hình Min, Max - Nguyễn Hữu Biển
28 p | 178 | 35
-
tuyển chọn 405 bài toán 7 (tái bản lần thứ 1): phần 2
95 p | 131 | 26
-
Tuyển chọn các bài Hình học không gian trong 21 đề thi thử Tây Ninh 2015
23 p | 139 | 23
-
Tuyển tập và hướng dẫn giải 330 bài toán Hình giải tích chọn lọc: Phần 1
226 p | 113 | 22
-
Tuyển tập và hướng dẫn giải 330 bài toán Hình giải tích chọn lọc: Phần 2
287 p | 116 | 20
-
Tuyển tập và hướng dẫn giải 245 bài toán Hình không gian chọn lọc (In lần thứ hai & bổ sung): Phần 2
215 p | 112 | 20
-
Tuyển tập và hướng dẫn giải 245 bài toán Hình không gian chọn lọc (In lần thứ hai & bổ sung): Phần 1
195 p | 114 | 20
-
Tuyển chọn 10 bài toán trọng điểm hình học phẳng OXY: Phần 2
261 p | 105 | 20
-
Lời giải các bài toán hình học phẳng thi chọn đội tuyển quốc gia
32 p | 127 | 18
-
Tuyển tập 80 bài Hình học môn Toán lớp 9
35 p | 130 | 15
-
Sáng kiến kinh nghiệm: Vận dụng các bài toán hình học phẳng được đề nghị trong các kì thi Imo từ 2003 đến 2007 vào việc dạy bồi dưỡng học sinh giỏi
44 p | 27 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn