intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Recurrent Neural Network

Xem 1-10 trên 10 kết quả Recurrent Neural Network
  • Bài giảng "Máy học nâng cao: Deep learning an introduction" cung cấp cho người học các kiến thức: Introduction, applications, convolutional neural networks and recurrent neural networks, hardware and software. Mời các bạn cùng tham khảo nội dung chi tiết.

    pdf109p abcxyz123_08 11-04-2020 52 6   Download

  • Bài giảng Học sâu và ứng dụng - Bài 9: Mạng hồi quy. Bài này cung cấp cho học viên những nội dung về: bài toán dự đoán chuỗi; mạng hồi quy thông thường; lan truyền ngược theo thời gian (BPTT); mạng LSTM và GRU; một số áp dụng;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!

    pdf58p duonghoanglacnhi 07-11-2022 25 5   Download

  • Luận văn Thạc sĩ Máy tính "Nghiên cứu bài toán bóc tách thông tin trong chứng minh thư sử dụng học sâu" trình bày các nội dung chính sau: Tổng quan về phát hiện, nhận dạng ký tự, sự phát triển của học máy và học sâu; Giới thiệu về mạng Convolution Neural Network; Mô hình mạng pixellink cho phát hiện văn bản; Giới thiệu về Convolution Recurrent Neural Network; Cài đặt thử nghiệm và kết quả.

    pdf57p viabigailjohnson 10-06-2022 31 7   Download

  • Tác giả mới dựa vào một số mô hình toán để dự báo như mô hình nhân, mô hình trung bình, mô hình ARIMA và SARIMA kết hợp để phân tích cũng như dự báo và ứnng dụng mô hình mạng LSTM là một phần đặc biệt của mạng RNN (Recurrent Neural Networks) để phân tích và dự báo bằng phương pháp học sâu. Mời các bạn cùng tham khảo.

    pdf63p capheviahe27 23-02-2021 33 6   Download

  • With Europe’s ageing fleet of nuclear reactors operating closer to their safety limits, the monitoring of such reactors through complex models has become of great interest to maintain a high level of availability and safety.

    pdf9p christabelhuynh 29-05-2020 10 1   Download

  • Tài liệu tham khảo về thuật toán tính Derivation of Delta Rules

    ppt6p haiph37 15-09-2010 114 11   Download

  • Convergence of Online Learning Algorithms in Neural Networks An analysis of convergence of real-time algorithms for online learning in recurrent neural networks is presented. For convenience, the analysis is focused on the real-time recurrent learning (RTRL) algorithm for a recurrent perceptron. Using the assumption of contractivity of the activation function of a neuron and relaxing the rigid assumptions of the fixed optimal weights of the system, the analysis presented is general and is applicable to a wide range of existing algorithms....

    pdf9p doroxon 12-08-2010 92 9   Download

  • A Class of Normalised Algorithms for Online Training of Recurrent Neural Networks A normalised version of the real-time recurrent learning (RTRL) algorithm is introduced. This has been achieved via local linearisation of the RTRL around the current point in the state space of the network. Such an algorithm provides an adaptive learning rate normalised by the L2 norm of the gradient vector at the output neuron. The analysis is general and also covers simpler cases of feedforward networks and linear FIR filters...

    pdf12p doroxon 12-08-2010 92 16   Download

  • Data-Reusing Adaptive Learning Algorithms In this chapter, a class of data-reusing learning algorithms for recurrent neural networks is analysed. This is achieved starting from a case of feedforward neurons, through to the case of networks with feedback, trained with gradient descent learning algorithms. It is shown that the class of data-reusing algorithms outperforms the standard (a priori ) algorithms for nonlinear adaptive filtering in terms of the instantaneous prediction error.

    pdf14p doroxon 12-08-2010 100 10   Download

  • Stability Issues in RNN Architectures Perspective The focus of this chapter is on stability and convergence of relaxation realised through NARMA recurrent neural networks. Unlike other commonly used approaches, which mostly exploit Lyapunov stability theory, the main mathematical tool employed in this analysis is the contraction mapping theorem (CMT), together with the fixed point iteration (FPI) technique. This enables derivation of the asymptotic stability (AS) and global asymptotic stability (GAS) criteria for neural relaxive systems.

    pdf19p doroxon 12-08-2010 105 9   Download

CHỦ ĐỀ BẠN MUỐN TÌM

TOP DOWNLOAD
ADSENSE

nocache searchPhinxDoc

 

Đồng bộ tài khoản
2=>2