
Weierstrass
-
CHƯƠNG I: PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN. (20T=12LT+8BT) 1.1.Khái niệm cơ bản. 1.1.1.Định nghĩa hàm 2 biến, nhiều biến hàm xác định, miền giá trị, đồ thị. 1.1.2.Sự hội tụ trong R, R. Tập bị chặn, đóng mở, điểm tụ, điểm trong, điểm biên, biên, lân cận. 1.2.Giới hạn và liên tục: 1.2.1.Giới hạn hàm số, 2 định nghĩa (không chứng minh tương đương) 1.2.2.Giới hạn lặp. 1.2.3.Hàm số liên tục. Liên tục trên tập đóng bị chặn, các định lý Weierstrass (không chứng minh). 1.3.Đạo hàm riêng và vi phân....
0p
cancer23
29-08-2012
409
86
Download
-
Bài giảng Toán A1 - Chương 1 cung cấp những kiến thức về giới hạn và liên tục. Nội dung chính trong chương này gồm có: Giới hạn dãy số, giới hạn hàm số, hàm số liên tục,...và một số nội dung chi tiết khác. Mời các bạn cùng tham khảo.
52p
allbymyself_10
02-03-2016
100
15
Download
-
Bài giảng Giải tích 3 - Bài 5: Chuỗi hàm số. Bài này cung cấp cho học viên những nội dung về: khái niệm chuỗi hàm số; chuỗi hàm hội tụ đều; chuỗi hàm hội tụ tuyệt đối; định lý Cauchy; tiêu chuẩn Weierstrass;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
11p
duonghoanglacnhi
07-11-2022
33
2
Download
-
Luận văn Thạc sĩ Đại số và lý thuyết số: Chuỗi Laurent P-adic bao gồm những nội dung về xây dựng chuỗi Laurent P-adic; định lý Weierstrass cho hàm giải tích Laurent P-adic; các định lý quan trọng liên quan đến chuỗi Laurent P-adic. Với các bạn chuyên ngành Toán học thì đây là tài liệu hữu ích.
71p
maiyeumaiyeu07
30-08-2016
137
13
Download
-
Luận văn Thạc sĩ Toán học: Đường cong Elliptic dạng Hesse nghiên cứu tính đối xứng của các đường cong dạng Hesse, tính toán xác định các điểm n-xoắn trên một số lớp đường cong dạng Hesse, mối liên hệ giữa hai dạng Weierstrass và Hesse.
91p
maiyeumaiyeu06
20-08-2016
74
8
Download
-
Bài giảng Toán T1 - Chương 2 trình bày các kiến thức về dãy số thực. Các nội dung chính cần nắm trong chương này gồm có: Dãy số hội tụ và các tính chất, dãy con và Định lý Bolzano - Weierstrass, dãy Cauchy. Mời các bạn cùng tham khảo để nắm bắt các nội dung chi tiết.
20p
allbymyself_10
02-03-2016
103
5
Download
-
Chương 2 cung cấp cho người học kiến thức về chuỗi hàm và dãy hàm. Những nội dung chính cần nắm bắt trong chương này gồm: Dãy hàm, điểm hội tụ và hội tụ đều; các tính chất của hàm giới hạn; chuỗi hàm, điểm hội tụ và hội tụ đều; tiêu chuẩn Weierstrass; tính chất của hàm tổng số. Mời các bạn cùng tham khảo.
4p
allbymyself_10
02-03-2016
111
7
Download
-
Định lí: Nếu là hàm liên tục trên đoạn , có đạo hàm trên khoảng và thì tồn tại sao cho . Chứng minh: Vì liên tục trên [a; b] nên theo định lí Weierstrass nhận giá trị lớn nhất M và giá trị nhỏ nhất m trên [a; b]. - Khi M = m ta có là hàm hằng trên [a; b], do đó với mọi luôn có . - Khi M m, vì nên tồn tại sao cho hoặc , theo bổ đề Fermat suy ra .
19p
hoangtrunghieu2210
26-01-2013
333
52
Download
-
trình bày Định lý Weierstrass về xấp xỉ hàm liên tục bằng đa thức với độ chính xác tùy ý. Chứng minh định lý này được dựa trên định lý xấp xỉ bằng toán tử tích phân sử dụng đa thức Bernstein cho hàm không tuần hoàn và tổng Fejer cho hàm tuần hoàn. Chương
14p
paradise_12
04-01-2013
413
32
Download
-
Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Stone-Weierstrass theorem for separable C*-algebras ...
31p
matuot_266
26-08-2011
64
9
Download
-
Giải tích phức là một trong những ngành cổ điển của toán học, bắt nguồn từ khoảng thể kỷ 19 và thậm chí có thể là trước đó. Một số nhà toán học nổi tiếng nghiên cứu lĩnh vực này như Euler, Gauss, Riemann, Cauchy, Weierstrass và nhiều nhà toán học khác ở thế kỷ 20.
17p
cindy03
19-01-2011
83
13
Download
-
1.1.Khái niệm cơ bản. 1.1.1.Định nghĩa hàm 2 biến, nhiều biến hàm xác định, miền giá trị, đồ thị. 1.1.2.Sự hội tụ trong R, R. Tập bị chặn, đóng mở, điểm tụ, điểm trong, điểm biên, biên, lân cận. 1.2.Giới hạn và liên tục: 1.2.1.Giới hạn hàm số, 2 định nghĩa (không chứng minh tương đương) 1.2.2.Giới hạn lặp. 1.2.3.Hàm số liên tục. Liên tục trên tập đóng bị chặn, các định lý Weierstrass (không chứng minh). 1.3.Đạo hàm riêng và vi phân. 1.3.1.Đạo hàm riêng. 1.3.2.Khả vi và vi phân. 1.3.3.Điều kiện cần, điều kiện đủ khả vi. 1.3.4.Tính gần đúng. 1.4.
3p
hayho12
21-03-2010
1086
365
Download
CHỦ ĐỀ BẠN MUỐN TÌM
