intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập nhận dạng tam giác

Chia sẻ: Ngoclan Lan | Ngày: | Loại File: PDF | Số trang:17

401
lượt xem
72
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhận dạng tam giác vuông Phương pháp: Sử dụng các phép biến đổi tương đương hoặc hệ quả để biến đổi "Điều kiện cho trước" đến một đẳng thức mà từ đó ta dể dàng kết luận được tính chất của tam giác

Chủ đề:
Lưu

Nội dung Text: Bài tập nhận dạng tam giác

  1. CHÖÔNG XI: NHAÄN DAÏN G TAM GIAÙC I. TÍNH CAÙ C GOÙ C CUÛ A TAM GIAÙ C Baø i 201: Tính caù c goù c cuû a ΔABC neá u : 3 sin ( B + C ) + sin ( C + A ) + cos ( A + B ) = ( *) 2 Do A+B+C= π 3 Neâ n : ( *) ⇔ sin A + sin B − cos C = 2 A+B A−B ⎛ C ⎞ 3 ⇔ 2 sin cos − ⎜ 2 cos2 − 1 ⎟ = 2 2 ⎝ 2 ⎠ 2 C A−B C 1 ⇔ 2 cos cos − 2 cos2 = 2 2 2 2 C C A−B ⇔ 4 cos2 − 4 cos cos +1 = 0 2 2 2 2 ⎛ C A − B⎞ 2 A − B ⇔ ⎜ 2 cos − cos ⎟ + 1 − cos =0 ⎝ 2 2 ⎠ 2 2 ⎛ C A − B⎞ 2 A − B ⇔ ⎜ 2 cos − cos ⎟ + sin =0 ⎝ 2 2 ⎠ 2 ⎧ C A−B ⎪2 cos 2 = cos 2 ⎪ ⇔ ⎨ ⎪sin A − B = 0 ⎪ ⎩ 2 ⎧ C ⎪2 cos 2 = cos 0 = 1 ⎧C π ⎪ ⎪ = ⇔ ⎨ ⇔ ⎨2 3 ⎪ A−B ⎪A = B =0 ⎩ ⎪ 2 ⎩ ⎧ π ⎪A = B = 6 ⎪ ⇔ ⎨ ⎪C = 2π ⎪ ⎩ 3 Baø i 202: Tính caù c goù c cuû a ΔABC bieá t : 5 cos 2A + 3 ( cos 2B + cos 2C ) + = 0 (*) 2 5 Ta coù : ( *) ⇔ 2 cos2 A − 1 + 2 3 ⎡cos ( B + C ) cos ( B − C ) ⎤ + = 0 ⎣ ⎦ 2
  2. ⇔ 4 cos2 A − 4 3 cos A. cos ( B − C ) + 3 = 0 2 ⇔ ⎡2 cos A − 3 cos ( B − C ) ⎤ + 3 − 3 cos2 ( B − C ) = 0 ⎣ ⎦ 2 ⇔ ⎡2 cos A − 3 cos ( B − C ) ⎤ + 3 sin 2 ( B − C ) = 0 ⎣ ⎦ ⎧sin ( B − C ) = 0 ⎧B − C = 0 ⎪ ⎪ ⇔⎨ 3 ⇔⎨ 3 ⎪cos A = cos ( B − C ) ⎪cos A = ⎩ 2 ⎩ 2 ⎧ A = 300 ⎪ ⇔⎨ ⎪B = C = 75 0 ⎩ Baø i 203: Chöù n g minh ΔABC coù C = 1200 neá u : A B C sin A + sin B + sin C − 2 sin ⋅ sin = 2 sin (*) 2 2 2 Ta coù A+B A−B C C A B C (*) ⇔ 2 sin cos + 2 sin cos = 2 sin sin + 2 sin 2 2 2 2 2 2 2 C A−B C C A+B A B ⇔ 2 cos cos + 2 sin cos = 2 cos + 2 sin sin 2 2 2 2 2 2 2 C⎛ A−B C⎞ A B ⇔ cos ⎜ cos + sin ⎟ = cos ⋅ cos 2⎝ 2 2⎠ 2 2 C⎡ A−B A + B⎤ A B ⇔ cos ⎢cos 2 + cos 2 ⎥ = cos 2 cos 2 2⎣ ⎦ C A B A B ⇔ 2 cos cos cos = cos cos 2 2 2 2 2 C 1 A B A B π ⇔ cos = (do cos > 0 vaø cos > 0 vì 0 < ; < ) 2 2 2 2 2 2 2 ⇔ C = 1200 Baø i 204: Tính caù c goù c cuû a ΔΑΒC bieá t soá ño 3 goù c taï o caá p soá coä n g vaø 3+ 3 sin A + sin B + sin C = 2 Khoâ n g laø m maá t tính chaá t toå n g quaù t cuû a baø i toaù n giaû söû A < B < C Ta coù : A, B, C taï o 1 caá p soá coä n g neâ n A + C = 2B π Maø A + B + C = π neâ n B = 3 3+ 3 Luù c ñoù : sin A + sin B + sin C = 2
  3. π 3+ 3 ⇔ sin A + sin + sin C = 3 2 3 ⇔ sin A + sin C = 2 A+C A −C 3 ⇔ 2 sin cos = 2 2 2 B A −C 3 ⇔ 2 cos cos = 2 2 2 ⎛ 3⎞ A−C 3 ⇔ 2. ⎜ ⎟ cos ⎜ 2 ⎟ = ⎝ ⎠ 2 2 C−A 3 π ⇔ cos = = cos 2 2 6 Do C > A neâ n ΔΑΒC coù : ⎧C − A π ⎧ π ⎪ 2 =6 ⎪C = 2 ⎪ ⎪ ⎪ 2π ⎪ π ⎨C + A = ⇔ ⎨A = ⎪ 3 ⎪ 6 ⎪ π ⎪ π ⎪B = 3 ⎪B = 3 ⎩ ⎩ Baø i 205: Tính caù c goù c cuû a ΔABC neá u ⎧ b2 + c 2 ≤ a 2 ⎪ (1 ) ⎨ ⎪sin A + sin B + sin C = 1 + 2 ⎩ ( 2) b2 + c 2 − a 2 AÙ p duï n g ñònh lyù haø m cosin: cos A = 2bc Do (1): b + c ≤ a neâ n cos A ≤ 0 2 2 2 π π A π Do ñoù : ≤A
  4. ⎧ ⎪sin A = 1 ⎧ π ⎪ ⎪ A 2 ⎪A = 2 ⎪ Daá u “=” taï i (2) xaû y ra ⇔ ⎨cos = ⇔ ⎨ ⎪ 2 2 ⎪B = C = π ⎪ B−C ⎪ ⎩ 4 ⎪cos 2 = 1 ⎩ Baø i 206: (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i A, naê m 2004) Cho ΔABC khoâ n g tuø thoû a ñieà u kieä n cos 2A + 2 2 cos B + 2 2 cos C = 3 ( *) Tính ba goù c cuû a ΔABC * Caù ch 1: Ñaët M = cos 2A + 2 2 cos B + 2 2 cos C − 3 B+C B−C Ta coù: M = 2 cos2 A + 4 2 cos cos −4 2 2 A B−C ⇔ M = 2 cos2 A + 4 2 sin cos −4 2 2 A B-C Do sin > 0 vaø cos ≤1 2 2 A Neâ n M ≤ 2 cos2 A + 4 2 sin − 4 2 π Maë t khaù c : ΔABC khoâ n g tuø neâ n 0 < A ≤ 2 ⇒ 0 ≤ cos A ≤ 1 ⇒ cos2 A ≤ cos A A Do ñoù : M ≤ 2 cos A + 4 2 sin − 4 2 ⎛ A⎞ A ⇔ M ≤ ⎜ 1 − 2 sin2 ⎟ + 4 2 sin − 4 ⎝ 2⎠ 2 A A ⇔ M ≤ −4 sin2 + 4 2 sin − 2 2 2 2 ⎛ A ⎞ ⇔ M ≤ −2 ⎜ 2 sin − 1 ⎟ ≤ 0 ⎝ 2 ⎠ Do giaû thieá t (*) ta coù M=0 ⎧ ⎪cos2 A = cos A ⎪ ⎪ A = 90 0 ⎪ B−C ⎧ Vaä y : ⎨cos =1 ⇔ ⎨ ⎪ 2 ⎪B = C = 45 ⎩ 0 ⎪ A 1 ⎪sin 2 = 2 ⎩ * Caù c h 2: ( *) ⇔ cos 2A + 2 2 cos B + 2 2 cos C − 3 = 0
  5. B+C B−C ⇔ cos2 A + 2 2 cos cos −2=0 2 2 A B−C ⇔ ( cos2 A − cos A ) + cos A + 2 2 sin cos −2=0 2 2 ⎛ A⎞ A B−C ⇔ cos A ( cos A − 1) + ⎜ 1 − 2 sin2 ⎟ + 2 2 sin cos −2=0 ⎝ 2⎠ 2 2 2 ⎛ A B − C⎞ ⎛ 2 B − C⎞ ⇔ cos A ( cos A − 1) − ⎜ 2 sin − cos ⎟ − ⎜ 1 − cos ⎟=0 ⎝ 2 2 ⎠ ⎝ 2 ⎠ 2 ⎛ A B − C⎞ 2 B −C ⇔ cos A ( cos A − 1) − ⎜ 2 sin − cos ⎟ − sin = 0 (*) ⎝ 2 2 ⎠ 2 Do ΔABC khoâ n g tuø neâ n cos A ≥ 0 vaø cos A − 1 < 0 Vaä y veá traù i cuû a (*) luoâ n ≤ 0 ⎧ ⎪cos A = 0 ⎪ ⎪ A B−C Daá u “=” xaû y ra ⇔ ⎨ 2 sin = cos ⎪ 2 2 ⎪ B−C ⎪sin 2 = 0 ⎩ ⎪ A = 90 0 ⎧ ⇔⎨ ⎪B = C = 45 0 ⎩ Baø i 207: Chöù n g minh ΔABC coù ít nhaá t 1 goù c 60 0 khi vaø chæ khi sin A + sin B + sin C = 3 (*) cos A + cos B + cos C Ta coù : ( ) ( ) ( (*) ⇔ sin A − 3 cos A + sin B − 3 cos B + sin C − 3 cos C = 0 ) ⎛ π⎞ ⎛ π⎞ ⎛ π⎞ ⇔ sin ⎜ A − ⎟ + sin ⎜ B − ⎟ + sin ⎜ C − ⎟ = 0 ⎝ 3⎠ ⎝ 3⎠ ⎝ 3⎠ ⎛ A + B π⎞ A−B ⎛ π⎞ ⇔ 2 sin ⎜ − ⎟ cos + sin ⎜ C − ⎟ = 0 ⎝ 2 3⎠ 2 ⎝ 3⎠ ⎡⎛ π C ⎞ π ⎤ A−B ⎛C π⎞ ⎛C π⎞ ⇔ 2 sin ⎢⎜ − ⎟ − ⎥ cos + 2 sin ⎜ − ⎟ cos ⎜ − ⎟ = 0 ⎣⎝ 2 2 ⎠ 3 ⎦ 2 ⎝ 2 6⎠ ⎝ 2 6⎠ ⎛C π⎞⎡ A−B ⎛ C π ⎞⎤ ⇔ 2 sin ⎜ − ⎟ ⎢ − cos + cos ⎜ − ⎟ ⎥ = 0 ⎝ 2 6⎠⎣ 2 ⎝ 2 6 ⎠⎦ ⎛C π⎞ A−B ⎛C π⎞ ⎛π A + B⎞ ⇔ sin ⎜ − ⎟ = 0 ∨ cos = cos ⎜ − ⎟ = cos ⎜ − ⎟ ⎝ 2 6⎠ 2 ⎝ 2 6⎠ ⎝3 2 ⎠ C π A − B π A + B −A + B π A + B ⇔ = ∨ = − ∨ = − 2 6 2 3 2 2 3 2 π π π ⇔C= ∨A = ∨B= 3 3 3
  6. Baø i 208: Cho ΔABC vaø V = cos 2 A + cos 2 B + cos 2 C – 1. Chöù n g minh: a/ Neá u V = 0 thì ΔABC coù moä t goù c vuoâ n g b/ Neá u V < 0 thì ΔABC coù ba goù c nhoï n c/ Neá u V > 0 thì ΔABC coù moä t goù c tuø 1 1 Ta coù : V = (1 + cos 2A ) + (1 + cos 2B ) + cos2 − 1 2 2 1 ⇔ V = ( cos 2A + cos 2B ) + cos2 C 2 ⇔ V = cos ( A + B ) .cos ( A − B ) + cos2 C ⇔ V = − cos C.cos ( A − B ) + cos2 C ⇔ V = − cos C ⎡cos ( A − B ) + cos ( A + B ) ⎤ ⎣ ⎦ ⇔ V = −2 cos C cos A cos B Do ñoù : a/ V = 0 ⇔ cos A = 0 ∨ cos B = 0 ∨ cos C = 0 ⇔ ΔABC ⊥ taï i A hay ΔABC ⊥ taï i B hay ΔABC ⊥ taï i C b/ V < 0 ⇔ cos A.cos B.cos C > 0 ⇔ ΔABC coù ba goù c nhoï n ( vì trong 1 tam giaùc khoâ n g theå coù nhieà u hôn 1 goùc tuø neâ n khoâ n g coù tröôø n g hôï p coù 2 cos cuø n g aâ m ) c/ V > 0 ⇔ cos A.cos B.cos C < 0 ⇔ cos A < 0 ∨ cos B < 0 ∨ cos C < 0 ⇔ ΔABC coù 1 goù c tuø . II. TAM GIAÙC VUOÂNG B a+c Baø i 209: Cho ΔABC coù cotg = 2 b Chöù n g minh ΔABC vuoâ n g B a+c Ta coù : cotg = 2 b B cos ⇔ 2 = 2R sin A + 2R sin C = sin A + sin C B 2R sin B sin B sin 2 B A+C A−C cos 2 sin . cos ⇔ 2 = 2 2 B B B sin 2 sin . cos 2 2 2 B B A−C B ⇔ cos2 = cos . cos (do sin > 0) 2 2 2 2 B A−C B ⇔ cos = cos (do cos > 0) 2 2 2
  7. B A−C B C−A ⇔ = ∨ = 2 2 2 2 ⇔ A = B+C∨C = A +B π π ⇔ A = ∨C= 2 2 ⇔ ΔABC vuoâng taïi A hay ΔABC vuoâng taïi C Baø i 210: Chöù n g minh ΔABC vuoâ n g taï i A neá u b c a + = cos B cos C sin B sin C b c a Ta coù : + = cos B cos C sin B sin C 2R sin B 2R sin C 2R sin A ⇔ + = cos B cos C sin B sin C sin B cos C + sin C cos B sin A ⇔ = cos B.cos C sin B sin C sin ( B + C ) sin A ⇔ = cos B.cos C sin B sin C ⇔ cos B cos C = sin B sin C (do sin A > 0) ⇔ cos B. cos C − sin B. sin C = 0 ⇔ cos ( B + C ) = 0 π ⇔ B+C= 2 ⇔ ΔABC vuoâng taïi A Baø i 211: Cho ΔABC coù : A B C A B C 1 cos ⋅ cos ⋅ cos − sin ⋅ sin ⋅ sin = (*) 2 2 2 2 2 2 2 Chöù n g minh ΔABC vuoâ n g Ta coù : A B C 1 A B C (*) ⇔ coscos cos = + sin sin sin 2 2 2 2 2 2 2 1⎡ A+B A − B⎤ C 1 1⎡ A+B A − B⎤ C ⇔ ⎢cos + cos cos = − ⎢cos − cos sin 2⎣ 2 2 ⎥⎦ 2 2 2⎣ 2 2 ⎥⎦ 2 ⎡ C A − B⎤ C ⎡ C A − B⎤ C ⇔ ⎢sin + cos ⎥ cos 2 = 1 − ⎢sin 2 − cos 2 ⎥ sin 2 ⎣ 2 2 ⎦ ⎣ ⎦ C C A−B C C C C A−B C ⇔ sin cos + cos cos = 1 − sin 2 + cos = 1 − sin 2 + cos sin 2 2 2 2 2 2 2 2 2 C C A−B C C A−B C ⇔ sin cos + cos cos = cos2 + cos sin 2 2 2 2 2 2 2
  8. C⎡ C C⎤ A−B⎡ C C⎤ ⇔ cos ⎢sin 2 − cos 2 ⎥ = cos 2 ⎢sin 2 − cos 2 ⎥ 2⎣ ⎦ ⎣ ⎦ ⎡ C C⎤ ⎡ C A − B⎤ ⇔ ⎢sin − cos ⎥ ⎢cos − cos =0 ⎣ 2 2⎦ ⎣ 2 2 ⎥ ⎦ C C C A−B ⇔ sin = cos ∨ cos = cos 2 2 2 2 C C A−B C B−A ⇔ tg = 1 ∨ = ∨ = 2 2 2 2 2 C π ⇔ = ∨ A = B+C∨B = A +C 2 4 π π π ⇔C= ∨A = ∨B= 2 2 2 Baø i 212: Chöù n g minh ΔABC vuoâ n g neá u : 3(cos B + 2 sin C) + 4(sin B + 2 cos C) = 15 Do baá t ñaú n g thöù c Bunhiacoá p ki ta coù : 3cos B + 4 sin B ≤ 9 + 16 cos2 B + sin2 B = 15 vaø 6sin C + 8 cos C ≤ 36 + 64 sin2 C + cos2 C = 10 neâ n : 3(cos B + 2 sin C) + 4(sin B + 2 cos C) ≤ 15 ⎧ cos B sin B ⎧ 4 ⎪ 3 = 4 ⎪ ⎪tgB = 3 ⎪ Daá u “=” xaû y ra ⇔⎨ ⇔⎨ ⎪ sin C = cos C ⎪cotgC = 4 ⎪ 6 ⎩ 8 ⎪ ⎩ 3 ⇔ tgB = cotgC π ⇔ B+C= 2 ⇔ ΔABC vuoâ n g taï i A. Baø i 213: Cho ΔABC coù : sin 2A + sin 2B = 4 sin A.sin B Chöù n g minh ΔABC vuoâ n g. Ta coù : sin 2A + sin 2B = 4 sin A.sin B ⇔ 2 sin(A + B) cos(A − B) = −2 [ cos(A + B) − cos(A − B)] ⇔ cos(A + B) = [1 − sin(A + B)] cos(A − B) ⇔ − cos C = [1 − sin C] cos(A − B) ⇔ − cos C(1 + sin C) = (1 − sin2 C). cos(A − B) ⇔ − cos C(1 + sin C) = cos2 C. cos(A − B) ⇔ cos C = 0 hay − (1 + sin C) = cos C. cos(A − B) (*) ⇔ cos C = 0 ( Do sin C > 0 neâ n −(1 + sin C) < −1 Maø cos C.cos(A − B) ≥ −1 .Vaä y (*) voâ nghieä m .) Do ñoù ΔABC vuoâ n g taï i C III. TAM GIAÙC CAÂN
  9. C Baø i 214:Chöù n g minh neá u ΔABC coù tgA + tgB = 2 cotg 2 thì laø tam giaù c caâ n . C Ta coù : tgA + tgB = 2 cotg 2 C 2 cos sin(A + B) 2 ⇔ = cos A.cos B C sin 2 C 2 cos sin C 2 ⇔ = cos A.cos B C sin 2 C C C 2 sin cos 2 cos ⇔ 2 2 = 2 cos A cos B C sin 2 C ⎛ C ⎞ ⇔ sin 2 = cos A.cos B ⎜ do cos > 0 ⎟ 2 ⎝ 2 ⎠ 1 1 ⇔ (1 − cos C ) = ⎡cos ( A + B ) + cos ( A − B ) ⎤ 2 2⎣ ⎦ ⇔ 1 − cos C = − cos C + cos ( A − B ) ⇔ cos ( A − B ) = 1 ⇔A=B ⇔ ΔABC caâ n taï i C. Baø i 215: Chöù n g minh ΔABC caâ n neá u : A B B A sin .cos3 = sin .cos3 2 2 2 2 A B B A Ta coù : sin .cos3 = sin .cos3 2 2 2 2 ⎛ A⎞ ⎛ B⎞ ⎜ sin 2 ⎟ 1 ⎜ sin 2 ⎟ 1 ⇔⎜ = A⎟ A ⎜ B⎟ B ⎜ cos ⎟ cos2 ⎜ cos ⎟ cos2 ⎝ 2⎠ 2 ⎝ 2⎠ 2 A B (do cos > 0 vaø cos > 0 ) 2 2
  10. A⎛ 2 A⎞ B⎛ 2 B⎞ ⇔ tg ⎜ 1 + tg ⎟ = tg ⎜ 1 + tg ⎟ 2⎝ 2⎠ 2⎝ 2⎠ A B A B ⇔ tg 3 − tg 3 + tg − tg = 0 2 2 2 2 ⎛ A B⎞⎡ A B A B⎤ ⇔ ⎜ tg − tg ⎟ ⎢1 + tg 2 + tg 2 + tg .tg ⎥ = 0 (*) ⎝ 2 2 ⎠⎣ 2 2 2 2⎦ A B A B A B ⇔ tg = tg ( vì 1 + tg 2 + tg 2 + tg tg > 0 ) 2 2 2 2 2 2 ⇔A=B ⇔ ΔABC caâ n taï i C Baø i 216: Chöù n g minh ΔABC caâ n neá u : cos2 A + cos2 B 1 = ( cotg 2 A + cotg 2B ) (*) sin 2 A + sin2 B 2 Ta coù : cos2 A + cos2 B 1 ⎛ 1 1 ⎞ (*) ⇔ = ⎜ + − 2⎟ sin A + sin B 2 ⎝ sin A sin B 2 2 2 2 ⎠ cos A + cos B 2 2 1⎛ 1 1 ⎞ ⇔ +1 = ⎜ + ⎟ sin A + sin B 2 2 2 ⎝ sin A sin2 B ⎠ 2 2 1⎛ 1 1 ⎞ ⇔ = ⎜ + ⎟ sin A + sin B 2 ⎝ sin A sin 2 B ⎠ 2 2 2 ⇔ 4 sin2 A sin2 B = ( sin2 A + sin2 B ) 2 ⇔ 0 = ( sin 2 A − sin2 B ) ⇔ sin A = sin B Vaä y ΔABC caâ n taï i C Baø i 217: Chöù n g minh ΔABC caâ n neá u : C a + b = tg ( atgA + btgB ) (*) 2 C Ta coù : a + b = tg ( atgA + btgB ) 2 C ⇔ ( a + b ) cotg = atgA + btgB 2 ⎡ C⎤ ⎡ C⎤ ⇔ a ⎢ tgA − cotg ⎥ + b ⎢ tgB − cotg ⎥ = 0 ⎣ 2⎦ ⎣ 2⎦ ⎡ A + B⎤ ⎡ A + B⎤ ⇔ a ⎢ tgA − tg ⎥ + b ⎢ tgB − tg 2 ⎥ = 0 ⎣ 2 ⎦ ⎣ ⎦ A−B B−A a sin b sin ⇔ 2 + 2 =0 A+B A+B cos A. cos cos B. cos 2 2
  11. A−B a b ⇔ sin = 0 hay − =0 2 cos A cos B 2R sin A 2R sin B ⇔ A = B hay = cos A cos B ⇔ A = B hay tgA = tgB ⇔ ΔABC caâ n taï i C IV. NHAÄN DAÏN G TAM GIAÙ C Baø i 218: Cho ΔABC thoû a : a cos B − b cos A = a sin A − b sin B (*) Chöù n g minh ΔABC vuoâ n g hay caâ n Do ñònh lyù haø m sin: a = 2R sin A, b = 2R sin B Neâ n (*) ⇔ 2R sin A cos B − 2R sin B cos A = 2R ( sin 2 A − sin 2 B ) ⇔ sin A cos B − sin B cos A = sin 2 A − sin 2 B 1 1 ⇔ sin ( A − B ) = (1 − cos 2A ) − (1 − cos 2B ) 2 2 1 ⇔ sin ( A − B ) = [ cos 2B − cos 2A ] 2 ⇔ sin ( A − B ) = − ⎡sin ( A + B ) sin ( B − A ) ⎤ ⎣ ⎦ ⇔ sin ( A − B ) ⎡1 − sin ( A + B ) ⎤ = 0 ⎣ ⎦ ⇔ sin ( A − B ) = 0 ∨ sin ( A + B ) = 1 π ⇔ A = B∨ A+B = 2 vaä y ΔABC vuoâ n g hay caâ n taï i C Caù c h khaù c sin A cos B − sin B cos A = sin 2 A − sin 2 B ⇔ sin ( A − B ) = ( sin A + sin B) ( sin A − sin B) A+B A−B A+B A−B ⇔ sin ( A − B ) = ( 2 sin cos ) (2 cos sin ) 2 2 2 2 ⇔ sin ( A − B ) = sin ( A + B ) sin ( A − B ) ⇔ sin ( A − B ) = 0 ∨ sin ( A + B ) = 1 π ⇔ A = B∨ A+B = 2 Baø i 219 ΔABC laø tam giaù c gì neá u ( a 2 + b2 ) sin ( A − B ) = ( a 2 − b2 ) sin ( A + B ) (*) Ta coù : (*) ⇔ ( 4R 2 sin 2 A + 4R 2 sin 2 B ) sin ( A − B ) = 4R 2 ( sin 2 A − sin 2 B ) sin ( A + B ) ⇔ sin 2 A ⎡sin ( A − B ) − sin ( A + B ) ⎤ + sin 2 B ⎡sin ( A − B ) + sin ( A + B ) ⎤ = 0 ⎣ ⎦ ⎣ ⎦ ⇔ 2sin2 A cos A sin ( −B ) + 2sin2 B sin A cos B = 0
  12. ⇔ − sin A cos A + sin B cos B = 0 (do sin A > 0 vaø sin B > 0 ) ⇔ sin 2A = sin 2B ⇔ 2A = 2B ∨ 2A = π − 2B π ⇔ A = B∨ A+B = 2 Vaä y ΔABC caâ n taï i C hay ΔABC vuoâ n g taï i C. Baø i 220: ΔABC laø tam giaù c gì neá u : ⎧a 2 sin 2B + b2 sin 2A = 4ab cos A sin B (1) ⎨ ⎩sin 2A + sin 2B = 4 sin A sin B (2) Ta coù : (1) ⇔ 4R 2 sin 2 A sin 2B + 4R 2 sin 2 B sin 2A = 16R 2 sin A sin 2 B cos A ⇔ sin 2 A sin 2B + sin2 B sin 2A = 4 sin A sin2 B cos A ⇔ 2 sin2 A sin B cos B + 2 sin A cos A sin 2 B = 4 sin A sin2 B cos A ⇔ sin A cos B + sin B cos A = 2 sin B cos A (do sin A > 0, sin B > 0) ⇔ sin A cos B − sin B cos A = 0 ⇔ sin ( A − B ) = 0 ⇔A=B Thay vaø o (2) ta ñöôï c sin 2A = 2 sin 2 A ⇔ 2 sin A cos A = 2 sin 2 A ⇔ cos A = sin A ( do sin A > 0 ) ⇔ tgA = 1 π ⇔A= 4 Do ñoù ΔABC vuoâ n g caâ n taï i C V. TAM GIAÙ C ÑEÀ U Baø i 221: Chöù n g minh ΔABC ñeà u neá u : bc 3 = R ⎡ 2 ( b + c ) − a ⎤ (*) ⎣ ⎦ Ta coù : (*) ⇔ ( 2R sin B )( 2R sin C ) 3 = R ⎡2 ( 2R sin B + 2R sin C ) − 2R sin A ⎤ ⎣ ⎦ ⇔ 2 3 sin B sin C = 2 ( sin B + sin C ) − sin ( B + C ) ⇔ 2 3 sin B sin C = 2 ( sin B + sin C ) − sin B cos C − sin C cos B ⎡ 1 3 ⎤ ⎡ 1 3 ⎤ ⇔ 2 sin B ⎢1 − cos C − sin C ⎥ + 2 sin C ⎢1 − cos B − sin B ⎥ = 0 ⎣ 2 2 ⎦ ⎣ 2 2 ⎦ ⎡ ⎛ π ⎞⎤ ⎡ ⎛ π ⎞⎤ ⇔ sin B ⎢1 − cos ⎜ C − ⎟ ⎥ + sin C ⎢1 − cos ⎜ B − ⎟ ⎥ = 0 (1) ⎣ ⎝ 3 ⎠⎦ ⎣ ⎝ 3 ⎠⎦
  13. ⎛ π⎞ Do sin B > 0 vaø 1 − cos ⎜ C − ⎟ ≥ 0 ⎝ 3⎠ ⎛ π⎞ sin C > 0 vaø 1 − cos ⎜ B − ⎟ ≥ 0 ⎝ 3⎠ Neâ n veá traù i cuû a (1) luoâ n ≥ 0 ⎧ ⎛ π⎞ ⎪cos ⎜ C − 3 ⎟ = 1 ⎪ ⎝ ⎠ Do ñoù , (1) ⇔ ⎨ ⎪cos ⎛ B − π ⎞ = 1 ⎪ ⎜ ⎟ ⎩ ⎝ 3⎠ π ⇔C=B= ⇔ ΔABC ñeà u . 3 ⎧ 3 ⎪sin B sin C = (1) ⎪ 4 Baø i 222: Chöù n g minh ΔABC ñeà u neá u ⎨ ⎪a 2 = a − b − c 3 3 3 (2) ⎪ ⎩ a−b−c Ta coù : (2) ⇔ a 3 − a 2 b − a 2 c = a 3 − b3 − c 3 ⇔ a 2 ( b + c ) = b3 + c 3 ⇔ a 2 ( b + c ) = ( b + c ) ( b2 − bc + c2 ) ⇔ a 2 = b2 − bc + c2 ⇔ b2 + c 2 − 2bc cos A = b2 + c 2 − bc (do ñl haø m cosin) ⇔ 2bc cos A = bc 1 π ⇔ cos A = ⇔A= 2 3 Ta coù : (1) ⇔ 4 sin B sin C = 3 ⇔ 2 ⎡ cos ( B − C ) − cos ( B + C ) ⎤ = 3 ⎣ ⎦ ⇔ 2 ⎡ cos ( B − C ) + cos A ⎤ = 3 ⎣ ⎦ ⎛1⎞ ⎛ π⎞ ⇔ 2 cos ( B − C ) + 2 ⎜ ⎟ = 3 ⎜ do (1 ) ta coù A = ⎟ ⎝2⎠ ⎝ 3⎠ ⇔ cos ( B − C ) = 1 ⇔ B = C Vaä y töø (1), (2) ta coù ΔABC ñeà u Baø i 223: Chöù n g minh ΔABC ñeà u neá u : sin A + sin B + sin C = sin 2A + sin 2B + sin 2C Ta coù : sin 2A + sin 2B = 2sin ( A + B ) cos ( A − B ) = 2sin C cos ( A − B ) ≤ 2sin C (1) Daá u “=” xaû y ra khi: cos ( A − B ) = 1 Töông töï : sin 2A + sin 2C ≤ 2sin B (2)
  14. Daá u “=” xaû y ra khi: cos ( A − C ) = 1 Töông töï : sin 2B + sin 2C ≤ 2sin A (3) Daá u “=” xaû y ra khi: cos ( B − C ) = 1 Töø (1) (2) (3) ta coù: 2 ( sin2A + sin2B + sin2C) ≤ 2 ( sinC + sinB + sin A ) ⎧cos ( A − B ) = 1 ⎪ Daá u “=” xaû y ra ⇔ ⎨cos ( A − C ) = 1 ⇔ A = B = C ⎪ ⎩cos ( B − C ) = 1 ⇔ ΔABC ñeà u Baø i 224: Cho ΔABC coù : 1 1 1 1 + + = (*) sin 2A sin 2B sin C 2 cos A cos B cos C 2 2 2 Chöù n g minh ΔABC ñeà u Ta coù : (*) ⇔ sin2 2B.sin2 2C + sin2 2A sin2 2C + sin2 2A sin2 2B sin 2A.sin 2B.sin 2C = ⋅ ( sin 2A sin 2B sin 2C ) 2 cos A cos B cos C = 4 sin A sin B sin C ( sin 2A sin 2B sin 2C ) Maø : 4 sin A sin B sin C = 2 ⎡ cos ( A − B ) − cos ( A + B ) ⎤ sin ( A + B ) ⎣ ⎦ = 2 ⎡cos ( A − B ) + cos C⎤ sin C ⎣ ⎦ = 2 sin C cos C + 2 cos ( A − B ) sin ( A + B ) = sin 2C + sin 2A + sin 2B Do ñoù , vôù i ñieà u kieä n ΔABC khoâ n g vuoâ n g ta coù (*) ⇔ sin 2 2B sin 2 2C + sin 2 2A sin 2 2C + sin 2 2A sin 2 2B = sin 2A. sin 2B. sin 2C ( sin 2A + sin 2B + sin 2C ) = sin 2 2A sin 2B sin 2C + sin 2 2B sin 2A sin 2C + sin 2 2C sin 2A sin 2B 1 2 1 2 ⇔ ( sin 2B sin 2A − sin 2B sin 2C ) + ( sin 2A sin 2B − sin 2A sin 2C ) 2 2 1 + ( sin 2C sin 2A − sin 2C sin 2B ) = 0 2 2 ⎧sin 2B sin 2A = sin 2B sin 2C ⎪ ⇔ ⎨sin 2A sin 2B = sin 2A sin 2C ⎪sin 2A sin 2C = sin 2C sin 2B ⎩ ⎧sin 2A = sin 2B ⇔⎨ ⇔ A = B = C ⇔ ABC ñeà u ⎩sin 2B = sin 2C Baø i 225: Chöù n g minh ΔABC ñeà u neá u : a cos A + b cos B + c cos C 2p = (*) a sin B + b sin C + c sin A 9R
  15. Ta coù : a cos A + b cos B + c cos C = 2R sin A cos A + 2R sin B cos B + 2R sin C cos C = R ( sin 2A + sin 2B + sin 2C ) = R ⎡2 sin ( A + B ) cos ( A − B ) + 2 sin C cos C ⎤ ⎣ ⎦ = 2R sin C ⎡cos ( A − B ) − cos ( A + B ) ⎤ = 4R sin C sin A sin B ⎣ ⎦ Caù c h 1: a sin B + b sin C + c sin A = 2R ( sin A sin B + sin B sin C + sin C sin A ) ≥ 2R 3 sin 2 A sin 2 B sin2 C ( do bñt Cauchy ) a cos A + b cos B + c cos C 2 3 Do ñoù veá traù i : ≤ sin A sin B sin C (1) a sin B + b sin C + c sin A 3 2p a + b + c 2 Maø veá phaû i : = = ( sin A + sin B + sin C ) 9R 9R 9 2 ≥ 3 sin A sin B sin C (2) 3 Töø (1) vaø (2) ta coù ( * ) ⇔ sin A = sin B = sin C ⇔ ΔABC ñeà u 4R sin A sin B sin C a+b+c Caù c h 2: Ta coù : (*) ⇔ = a sin B + b sin C + c sin A 9R ⎛ a ⎞⎛ b ⎞⎛ c ⎞ 4R ⎜ ⎟⎜ ⎟⎜ ⎟ ⇔ ⎝ 2R ⎠ ⎝ 2R ⎠ ⎝ 2R ⎠ = a + b + c ⎛ b ⎞ ⎛ c ⎞ ca 9R a⎜ ⎟ + b⎜ ⎟+ ⎝ 2R ⎠ ⎝ 2R ⎠ 2R ⇔ 9abc = ( a + b + c )( ab + bc + ca ) Do baá t ñaú n g thöùc Cauchy ta coù a + b + c ≥ 3 abc ab + bc + ca ≥ 3 a 2 b2c 2 Do ñoù : ( a + b + c )( ab + bc + ca ) ≥ 9abc Daá u = xaû y ra ⇔ a = b = c ⇔ ΔABC ñeà u . Baø i 226: Chöù n g minh ΔABC ñeà u neá u A B C cot gA + cot gB + cot gC = tg + tg + tg ( *) 2 2 2 sin ( A + B ) sin C Ta coù : cot gA + cot gB = = sin A sin B sin A sin B sin C ≥ 2 (do bñt Cauchy) ⎛ sin A + sin B ⎞ ⎜ ⎟ ⎝ 2 ⎠
  16. C C C 2 sin cos 2 sin = 2 2 = 2 2 A + B 2 A − B C 2 A − B sin .cos cos cos 2 2 2 2 C ≥ 2tg (1) 2 B Töông töï : cot gA + cot gC ≥ 2tg (2) 2 A cot gB + cot gC ≥ 2tg (3) 2 Töø (1) (2) (3) ta coù ⎛ A B C⎞ 2 ( cot gA + cot gB + cot gC ) ≥ 2 ⎜ tg + tg + tg ⎟ ⎝ 2 2 2⎠ Do ñoù daá u “=” taï i (*) xaû y ra ⎧ A−B A−C B−C ⎪cos = cos = cos =1 ⇔⎨ 2 2 2 ⎪sin A = sin B = sin C ⎩ ⇔A=B=C ⇔ ΔABC ñeàu. BAØI TAÄP 1. Tính caù c goù c cuû a ΔABC bieá t : 3 π 2π a/ cos A = sin B + sin C − (ÑS: B = C = ,A = ) 2 6 3 π b/ sin 6A + sin 6B + sin 6C = 0 (ÑS: A = B = C = ) 3 c/ sin 5A + sin 5B + sin 5C = 0 2. Tính goù c C cuû a ΔABC bieá t : a/ (1 + cot gA ) (1 + cot gB ) = 2 ⎧ A, B nhoïn ⎪ b/ ⎨ 2 ⎪sin A + sin B = 9 sin C 2 ⎩ ⎧cos2 A + cos2 B + cos2 C < 1 3. Cho ΔABC coù : ⎨ ⎩sin 5A + sin 5B + sin 5C = 0 Chöù n g minh Δ coù ít nhaá t moä t goù c 36 0 . 4. Bieá t sin 2 A + sin 2 B + sin 2 C = m . Chöù n g minh a/ m = 2 thì ΔABC vuoâ n g b/ m > 2 thì ΔABC nhoï n c/ m < 2 thì ΔABC tuø . 5. Chöù n g minh ΔABC vuoâ n g neá u : b+c a/ cos B + cos C = a b c a b/ + = cos B cos C sin B sin C
  17. c/ sin A + sin B + sin C = 1 − cos A + cos B + cos C ( b − c ) = 2 ⎡1 − cos ( B − C )⎤ 2 d/ ⎣ ⎦ b 2 1 − cos 2B 6. Chöù n g minh ΔABC caâ n neá u : 1 + cos B 2a + c a/ = sin B a 2 − c2 sin A + sin B + sin C A B b/ = cot g . cot g sin A + sin B − sin C 2 2 c/ tgA + 2tgB = tgA.tg B 2 ⎛ C ⎞ ⎛ C⎞ d/ a ⎜ cot g − tgA ⎟ = b ⎜ tgB − cot g ⎟ ⎝ 2 ⎠ ⎝ 2⎠ C B e/ ( p − b ) cot g = ptg 2 2 C f/ a + b = tg ( atgA + btgB ) 2 7. ΔABC laø Δ gì neá u : A+B a/ atgB + btgA = ( a + b ) tg 2 b/ c = c cos 2B + b sin 2B c/ sin 3A + sin 3B + sin 3C = 0 d/ 4S = ( a + b − c )( a + c − b ) 8. Chöù n g minh ΔABC ñeà u neá u a/ 2 ( a cos A + b cos B + c cos C ) = a + b + c b/ 3S = 2R 2 ( sin 3 A + sin 3 B + sin 3 C ) c/ sin A + sin B + sin C = 4 sin A sin B sin C 9R d/ m a + m b + m c = vôù i ma , m b , mc laø 3 ñöôø n g trung tuyeá n 2 Th.S Phạm Hồng Danh – TT luyện thi Vĩnh Viễn
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2