intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

4 Đề kiểm tra 1 tiết HK2 Toán 9 - (Kèm đáp án) - Đề 6-9

Chia sẻ: Le Thanh Hai | Ngày: | Loại File: PDF | Số trang:13

74
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Để học sinh xem xét đánh giá khả năng tiếp thu bài và nhận biết năng lực của bản thân về môn Toán, mời các bạn tham khảo 4 Đề kiểm tra 1 tiết HK2 Toán 9 kèm đáp án từ đề 6 đến đề 9 với nội dung xoay quanh giải Toán đố, vẽ đồ thị hàm số,...

Chủ đề:
Lưu

Nội dung Text: 4 Đề kiểm tra 1 tiết HK2 Toán 9 - (Kèm đáp án) - Đề 6-9

  1. ĐỀ KIỂM TRA 1 TIẾT HK2 MÔN: Toán 9 Đề 6 A. Trắc nghiệm khách quan. ( 2 điểm ) Khoanh tròn vào cchữ cái đứng trước câu trả lời đúng nhất. Câu 1. (a) Phương trình nào sau đây là phương trình bậc nhất 2 ẩn ? 1 A. 3x2 + 2y = -1 B. 3x+2y = -1 C. 3x – 2y – z = 0 D. +y=3 x Câu 2 : (a) Phương trình bậc nhất 2 ẩn ax + by =c có bao nhiêu nghiệm ? A. Một nghiệm duy nhất B.Vô nghiệm C. Vô số nghiệm D. Cả A, B, C Câu 3: (a) Cặp số(1;-2) là nghiệm của phương trình nào sau đây: A. 2x -y = -3 B. x + 4y = 2 C. x - 2y = 5 D. x -2y = 1 2 x  3 y  5 Câu 4: (b) Hệ phương trình  vô nghiệm khi : 4 x  my  2 A. m = - 6 B. m = 1 C. m = -1 D. m = 6 B. Tự luận( 7 điểm ) Câu 5:( 2,0 điểm ) (a) 5x  2 y  18 Giải hệ phương trình :  3 x  y  2 Câu 6 (3,0 điểm) (b) Nga mua 5kg quýt và 4 kg cam hết 133 ngàn đồng. Nếu Nga mua 9 kg quýt và 2 kg cam thì hết 151 ngàn đồng. Hỏi giá mỗi kg quýt và cam là bao nhiêu? Câu 7 (3,0 điểm) (c) 1 Hai người cùng làm trong 12 giờ thì được công việc . Nếu người thứ nhất làm 42 10 giờ rồi nghỉ và sau đó người thứ hai làm tiếp trong 22 giờ nữa thì được 25% công việc đó. Hỏi nếu làm một mình thì mỗi người làm xong công việc đó trong bao lâu. HẾT 1
  2. ĐÁP ÁN VÀ THANG ĐIỂM (Đáp án này gồm 2 trang) I. TRẮC NGHIỆM : (3đ) Câu 1 2 3 4 Đáp án B C C A II. TỰ LUẬN: Câu Ý Nội dung Điểm 5 5x  2 y  18 5x  2 y  18 11x  22    1.0 3 x  y  2 6 x  2 y  4 3 x  y   2  x  2 x  2 0.75   3.(2)  y  2 y  4 Vậy hệ có một nghiệm (x;y)=(-2;4) 0.25 6 Gọi x (ngàn đồng ) và y (ngàn đồng) lần lượt là giá mỗi kg quýt và cam 0.25 (x,y  N * ) Nga mua 5kg quýt và 4 kg cam hết 133 ngàn đồng nên ta có phương 1.0 trình: 5x+4y=133 Nga mua 9 kg quýt và 2 kg cam thì hết 151 ngàn đồng nên ta có phương trình: 9x+2y=151 1.0 5x  4 y  133 Từ đó ta có hệ phương trình:  9 x  2 y  151 Giải hệ ta được x = 13; y = 17. Vậy giá mỗi kg quýt và cam lần lượt là 13 ngàn đồng và 17 ngàn đồng. 0.75 7 Gọi x(h) và y (h) lần lượt là thời gian để mỗi người làm riêng xong công việc. (x>0, y>0). 0.25 1 1 Trong một giờ mỗi người lần lượt làm được và công việc. x y 1 Hai người cùng làm trong 12 giờ thì được công việc nên ta có 10 12 12 1 phương trình:   x y 10 1.0 Nếu người thứ nhất làm 42 giờ rồi nghỉ và sau đó người thứ hai làm 1 tiếp trong 22 giờ nữa thì được 25% = công việc đó nên ta có phương 4 2
  3. 42 22 1 trình:   x y 4 1.0 12 12 1  x  y  10  Từ đó ta có hệ phương trình:   42  22  1 x  y 4 1 1  x  300  x  300 Giải hệ ta được  1 suy ra  .   1  y  200  y 200  Vậy nếu làm một mình thì người thứ nhất làm xong trong 300h và người 0.75 thứ hai làm xong trong 200h. 3
  4. ĐỀ KIỂM TRA 1 TIẾT HK2 MÔN: Toán 9 Đề 7 Câu 1: (1điểm) Cho tứ giác ABCD nội tiếp có BAD  600 . Tính góc BCD . Câu 2: (1,5 điểm) Cho (O; 4cm). sđ MmN = 300. Tính diện tích hình quạt tròn OMmN. Câu 3: (1 điểm) Cho đường tròn tâm O. Kẻ hai dây AB và CD cắt nhau tại E. Tính góc BEC biết số đo cung AD bằng 550 và số đo cung BC bằng 1250. Câu 4: (1,5 điểm) Trên đường tròn (O;R) lấy hai điểm C và D sao cho độ dài cung CD 3 R bằng ; hãy tính số đo của góc ở tâm chắn cung CD. 4 Câu 5: (1,5 điểm) Cho hình vẽ bên, biết AD là đường kính của đường tròn (O), ACB  600 . Tính số đo của các góc: ADB, ABD, DAB, C 600 D O A B Câu 6: (3,5 điểm) Cho nửa đường tròn tâm (O), đường kính BC, Lấy điểm A trên cung BC sao cho AB < AC. D là trung điểm của OC, từ D kẻ đường thẳng vuông góc với BC cắt AC tại E . a) (a) Chứng minh: tứ giác ABDE nội tiếp được đường tròn, xác định tâm. b) (b) Chứng minh: BAD = BED c) (c) Chứng minh: CE.CA = CD.CB d) (d) Trên tia đối của tia AB lấy điểm M sao cho AM = AC. Giả sử không có điều kiện AB < AC, tìm quỹ tích điểm M khi A di chuyển trên nửa đường tròn tâm O. HẾT 1
  5. ĐÁP ÁN VÀ THANG ĐIỂM (Đáp án này gồm 2 trang) Câu Ý Nội dung Điểm 1 0 0 Vì ABCD là tứ giác nội tiếp nên BCD  180  BAD  180  60  120 0 0 1.0 2 Diện tích hình quạt tròn OmmN:  R 2 n  .42.30 4 S   (cm 2 ) 1.5 360 360 3 3 sdAD  sd BC 550  1250 BEC    900 1.0 2 2 4 3 R 180.  Rn 180l 4  1350 1.5 Từ công thức l  suy ra n   180 R R Vậy COD  1350 5 Vì ADB và ACB là hai góc nội tiếp cùng chắn cung AB nên: C ADB  ACB  600 . 600 D 0.5 Vì ABD là góc nội tiếp chắn nửa đường tròn nên: O 0 0.5 ADB  90 A 0.5 Xét ∆ABD có: DAB  1800  (900  600 )  300 B 2
  6. 6 M 0.25 0.5 A 0.25 E B O D C 6a Xét tứ giác ABDE có : BAE  BDE  900 nên tứ giác ABDE nội tiếp đường tròn đường kính BE. 0.75 Tâm của đường tròn là trung điểm của đoạn BE. 0.25 6b Xét đường tròn đường kính BE có BAD và BED là hai góc nội tiếp cùng 1.0 chắn cung BD nên BAD  BED 6c Chứng minh: CE.CA = CD.CB Xét hai tam giác vuông CED và CBA có C chung nên ∆CED ∆CBA. 0.5 CE CD 0.5 Do đó:  suy ra CE.CA=CD.CB CB CA 6d Xét tam giác MAC vuông tại A có AC=AM nên tam giác MAC vuông cân tại A. Suy ra AMC  450 hay BMC  450 . 0.25 Vậy khi A di chuyển trên nửa đường tròn tâm O thì M di chuyển trên cung chứa góc 450 dựng trên đoạn AB cùng phía với điểm A. 0.25 3
  7. ĐỀ KIỂM TRA 1 TIẾT HK2 MÔN: Toán 9 Đề 8. A. Trắc nghiệm khách quan: (3 điểm) Hãy chọn đáp án đúng: 1 Câu 1: Cho hàm số y   x 2 2 A. Hàm số trên luôn nghịch biến. B. Hàm số trên luôn đồng biến. C. Giá trị của hàm số bao giờ cũng âm. D. Hàm số nghịch biến khi x > 0 và đồng biến khi x < 0 Câu 2: Phương trình bậc hai một ẩn 5x2 – 3x – 6 = 0 có các hệ số là: A. a = 5; b = 3; c = -6 B. a = 5 ; b = -3; c = -6 C. a = 5; b = 3; c = 6 C. a = -5; b = -3; c = -6 Câu 3: Cho hai số có tổng – 28 và tích bằng 195. Hai số đó là: A. 13 ; 15 B. 13 ; – 15 C. – 13 ; 15 D. – 13 ; – 15 Câu 4: Nghiệm của phương trình x2 + 3x – 4 = 0 là : A. x1 = 1 ; x2 = – 4 B. x1 = – 1 ; x2 = 4 C. x1 = – 1 ; x2 = – 4 D. x1 = 1 ; x2 = 4 Câu 5 : Phương trình bậc hai x2 + 2( m + 1)x + m2 – 1 = 0 có hai nghiệm phân biệt khi và chỉ khi : A. m < 1 B. m > 1 C. m > – 1 D. m < - 1 Câu 6: Với giá trị nào của m thì phương trình: (m2-9)x2 - x + 7m = 0 là phương trình bậc hai ẩn x? A. m  3 B. m  -3 C. m   3 D.m  9 B. Tự luận : (7 điểm) 1 2 Câu 7: (1,5đ) Vẽ đồ thị hàm số y  x và y = -2x trên cùng một hệ trục tọa độ. Tìm 2 tọa độ giao điểm của chúng (bằng cách tính). Câu 8: (3đ) Giải các phương trình bậc hai : 2 a. 2 x  x  3  0 1
  8. b. 3x 2  4 6 x  4  0 Câu 9: (1đ) Tìm hai số u và v biết : u+v=–6 và u.v = – 91 Câu 10: (1,5đ) Cho phương trình: x 2  2(m  1) x  m 2  3m  0 . Tìm m để phương trình : a. Có nghiệm. b. Có hai nghiệm trái dấu. HẾT ĐÁP ÁN VÀ THANG ĐIỂM (Đáp án này gồm 2 trang) I. TRẮC NGHIỆM : (3đ) Câu 1 2 3 4 5 6 Đáp án D B D A C C II. TỰ LUẬN: Câu Ý Nội dung Điểm 7 7.1 Vẽ đúng đồ thị 1.0 7.2 Phương trình hoành độ giao điểm của hai đồ thị: 1 2 x  2x 2 1  x 2  2x  0 2 1  x( x  2)  0 2  x  0;x  4 0.25 Với x  0  y  0 Với x  4  y  8 Vậy tọa độ giao điểm của hai đồ thị là (0;0), (- 4;8). 0.25 8 2.0 8.1 2 2x  x  3  0 a  2;b  1;c  3 0.25 a  b  c  2  1  ( 3)  0 0. 5 3  x1  1;x 2   0. 5 2 2
  9. 3 0.25 Vậy phương trình có hai nghiệm là x1  1;x2   2 8.2 3x 2  4 6 x  4  0 0.25 a  3;b'  2 6;c  4   ( 2 6)2  3.( 4)  36  0    6 0.5 0.5 2 6 6 2 6 6 x1  ;x 2  3 3 2 6 6 2 6 6 Vậy phương trình có hai nghiệm là x1  ;x 2  3 3 0.25 9 2.0 Tìm hai số u và v biết : u + v = – 6 và u.v = – 91 u và v là các nghiệm của phương trình: x 2  6 x  91  0 0.25 a  1;b'  3;c  91   32  1.( 91)  100  0    10 3  10 3  10 0.5 x1   13;x 2  7 1 1 u  13 u  7 Vậy  hoặc  v  7 v  13 0.25 10 10.1 x 2  2( m  1) x  m 2  3m  0 Ta có  '  [-(m+1)] 2  (m 2  3m)  m 2  2m  1  m 2  3m  5m  1 0.25 Phương trình có nghiệm khi và chỉ khi 1 0.5  '  0  5m  1  0  m   5 1 Vậy phương trình có nghiệm khi m   5 0.25 Phương trình có hai nghiệm trái dấu khi ac  0  m 2  3m  0  m( m  3)  0 m  0 m  0  hay  . m  3  0 m  3  0 m  0 m  0  hay  m  3 m  3 0m3 3
  10. 1 Kết hợp với điều kiện m   phương trình có hai nghiệm trái dấu khi 5 0
  11. Đề 9 ĐỀ KIỂM TRA 1 TIẾT HK2 MÔN: Toán 9 ĐỀ BÀI Câu 1(2đ):Trình bày định nghĩa phương trình bậc nhất hai ẩn. Cho ví dụ. Câu 2(2đ):Cho hàm số y= x2 (P) a) Vẽ đồ thị của hàm số đã cho ? b) Tìm toạ độ giao điểm (nếu có) của đường thẳng y= 4x-3 với Parabol (P)? Câu 3(4đ): Dùng công thức nghiệm hoặc công thức nghiệm thu gọn giải các phương trình sau (nhẩm nghiệm nếu có thể): 2 2 a) x  5 x  5  0 ; b) 3 x  4 6 x  4  0 ; 2 c) 2012 x 2  2013x  1  0 ; d) 2 x  2013 x  2011  0 . Câu 4(1đ) Tìm hai số x1 , x2 , biết: x1  x2  5 và x1.x2  6 ; Câu 5:(1đ) Tìm m để phương trình: x2 – 2(m - 1)x + m2 – 3m = 0 (1) có 2 nghiệm x1, x2 thoả mản x12 + x22 = 8. ------------------------------------------------------Hết--------------------------------------- --------------------
  12. ĐÁP ÁN Câu Nội dung Điểm 1 *Định nghĩa:(SGK/40) 1đ *HS lấy được ví dụ: 1đ Bảng giá trị : 0,5đ x -3 -2 -1 0 1 2 3 y= x2 9 4 1 0 1 4 9 Đồ thị: y f(x)=x*x 9 8 a 7 6 5 0,5 đ 2 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 Phương trình hoành độ giao điểm x2 = 4x -3=0 hay x2-4x+3=0 0,25đ x 1 =1  y 1 =1  A(1;1), x 2 =3  y 2 =9  B(3;9) 0;25đ b Vậy đường thẳng cắt Parabol tại hai điểm A(1;1) và B(3;9) 0,25đ 0,25đ 2 2 2 x  5 x  5  0 Ta có:  = b – 4ac = (- 5) – 4.1.5 = 25 – 20 = 5 > 0 0,5đ Phương trình có hai nghiệm phân biệt: a -b+    5   5 5  5 - b -    5   5 5  5 x1 = =  ; x2 = =  0,5đ 2a 2 2 2a 2 2 3 3 x 2  4 6 x  4  0 Ta có: '  b '2  ac = (2 6) 2  3.(4)  ' = 24 + 12 = 36 > 0 0,5đ Phương trình có hai nghiệm phân biệt : b -b+  2 6 6 6 3 -b-  2 6 6 6 3 x1 = =  ; x2 = =  0,5đ 2a 6 3 2a 6 3 2012 x 2  2013 x  1  0 0,5đ Ta có: a + b + c = 2012 - 2013 + 1 = 0 0,5đ c c 1 Nên phương trình đã cho có nghiệm x1 = 1; x2 = = a 2012 2 x 2  2013 x  2011  0 d Ta có: a - b + c = 2 - 2013 + 2011 = 0 0,5đ
  13. c 2011 0,5đ Nên phương trình đã cho có nghiệm x1 = -1; x2     a 2 Hai số x1 , x2 là nghiệm của phương trình x2 - 5x + 6 = 0 0,5đ 4 => x1 = 3; x2 = 2 hoặc x1 = 2; x2 = 3; 0,5đ x2 – 2(m - 1) + m2 – 3m = 0 (1) ’ = b’2 – ac = (m – 1)2 – ( m2 – 3m) = m2 - 2m + 1 - m2 + 3m = m + 1 0,25đ PT (1) có hai nghiệm khi và chỉ khi ’ > 0  m + 1 > 0  m > - 1  b x 1  x 2   a  x1  x 2  2m-2 0,25đ Áp dụng hệ thức Vi- ét ta có:   2 5  x1 .x 2  c x1. x2  m  3m   a 0,25đ x1 + x2 = 8  (x1 + x2) - 2x1.x2 = 8  (2m – 2)2 - 2(m2 - 3m) = 8 2 2 2 2 2 2  4m - 8m + 4 - 2m + 6m = 8  m - m - 2 = 0  m1 = - 1; m2 = 2 Vậy với m = - 1 hoặc m = 2 thì (1) có 2 nghiệm x1, x2 thoả mãn x12 + x22 = 8. 0,25đ Lưu ý: Học sinh làm cách khác đúng vẫn chấm điểm
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1