Bài giảng Đại số lớp 8 chương 4: Bất phương trình
lượt xem 4
download
Bài giảng Đại số lớp 8 chương 4 "Bất phương trình" được biên soạn với nội dung các bài học trong chương 4 bất phương trình. Mỗi bài học sẽ có phần tóm tắt lý thuyết, các bài tập và dạng toán, bài tập về nhà để giúp các em tiếp thu bài học một cách tốt nhất. Chúc các em học tập tốt và đạt thành tích cao nhé.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Đại số lớp 8 chương 4: Bất phương trình
- Chương Bất phương trình 4 §1 Liên hệ giữa thứ tự và phép cộng 1 Tóm tắt lý thuyết 254
- Chương 4. Bất phương trình 255 1.1 Thứ tự trên tập hợp số 1. Trên tập số thực, khi so sánh hai số a và b, xảy ra một trong ba trường hợp sau: Trường hợp Ký hiệu a bằng b a=b a lớn hơn b a>b a nhỏ hơn b a b, hoặc a = b. Khi đó, ta nói gọn là a lớn hơn hoặc bằng b, ký hiệu a ≥ b. Ví dụ: x2 ≥ 0 với mọi x. Nếu c là số không âm ta viết c ≥ 0. Nếu số a không lớn hơn số b thì phải có hoặc a < b, hoặc a = b. Khi đó, ta nói gọn là a nhỏ hơn hoặc bằng b, ký hiệu a ≤ b. Ví dụ: −x2 ≤ 0 với mọi x. Nếu c là số không lớn hơn 3 ta viết c ≤ 3. 1.2 Bất đẳng thức Định nghĩa 3. Hệ thức dạng a > b (hay a < b; a ≥ b; a ≤ b) được gọi là bất đẳng thức; trong đó a và b lần lượt được gọi là vế trái và vế phải của bất đẳng thức. Tính chất 1. Khi cộng cùng một số vào cả hai vế của một bất đẳng thức, ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho. Cụ thể, với ba số a, b và c ta có: Nếu a > b thì a + c > b + c. Nếu a < b thì a + c < b + c. Nếu a ≥ b thì a + c ≥ b + c. Nếu a ≤ b thì a + c ≤ b + c. 2 Bài tập và các dạng toán | Dạng 92. Sắp xếp thứ tự các số trên trục số. Biểu diễn mối quan hệ giữa các tập số Dựa vào các kiến thức cơ bản đã học ở các lớp dưới để làm ccc BÀI TẬP MẪU ccc b Ví dụ 1. Sắp xếp các số sau từ bé đến lớn và biểu diễn trên trục số: a) 0; −2; −1; 5; b) 5; 2; 4; −3. Tài liệu Toán 8 này là của: ....................................
- 1. Liên hệ giữa thứ tự và phép cộng 256 L Lời giải. a) −2; −1; 0; 5. b) −3; 2; 4; 5. −2 −1 0 5 x −3 2 4 5 x b Ví dụ 2. Sắp xếp các số sau từ lớn đến bé và biểu diễn trên trục số: a) −1; 2; 0; −2. b) 0; 3; −2; 4. L Lời giải. a) 2; 0; −1; −2. b) 4; 3; 0; −2. −2 −1 0 2 x −2 0 3 4 x | Dạng 93. Xét tính đúng sai của khẳng định cho trước. Dựa vào các kiến thức cơ bản, các tính chất để kiểm tra tính đúng sai. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Hãy xét xem các khẳng định sau đúng hay sai? Vì sao? a) 2 + (−3) > 4; b) 3 · (−3) ≤ −6; c) 3 + (−2) < 8 − 10; d) (−2) · (−3) ≥ −2 + 8. L Lời giải. a) Sai. Vì 2 + (−3) = −1 < 4. b) Đúng. Vì 3 · (−3) = −9 ≤ −6. c) Sai. Vì 3 + (−2) = 1 > −2 = 8 − 10. d) Đúng. Vì (−2) · (−3) = 6 = −2 + 8. b Ví dụ 2. Hãy xét xem các khẳng định sau đúng hay sai? Vì sao? 1 a) 3 + 2 > 8; b) 3 · < 0; 3 c) (−1) + 3 ≤ 5 − (−1); d) (−1) · (−5) ≥ 5 − 4. L Lời giải. 1 a) Sai. Vì 3 + 2 = 5 < 8. b) Sai. Vì 3 · = 1 > 0. 3 c) Đúng. Vì (−1) + 3 = 2 ≤ 6 = 5 − (−1). d) Đúng. Vì (−1) · (−5) = 5 ≥ 1 = 5 − 4. Giáo viên: ....................................
- Chương 4. Bất phương trình 257 b Ví dụ 3. Chuyển các khẳng định sau về dạng bất đẳng thức và cho biết khẳng định đó đúng hay sai? a) Tổng của −4 và 6 nhỏ hơn hoặc bằng 3; b) Hiệu của 2 và −7 nhỏ hơn 0; c) Tích của −2 và −1 lớn hơn hoặc bằng d) Thương của −8 và 2 lớn hơn 5. 2; L Lời giải. a) (−4) + 6 ≤ 3. Khẳng định này là đúng. b) 2 − (−7) < 0. Khẳng định này là sai. −8 c) (−2) · (−1) ≥ 2. Khẳng định này là đúng. d) > 5. Khẳng định này là sai. 2 b Ví dụ 4. Chuyển các khẳng định sau về dạng bất đẳng thức và cho biết khẳng định đó đúng hay sai? a) Tổng của −1 và 5 nhỏ hơn hoặc bằng 2; b) Hiệu của 8 và 2 nhỏ hơn 12; c) Tích của 3 và −2 lớn hơn hoặc bằng 9; d) Thương của −6 và 4 lớn hơn 1. L Lời giải. a) −1 + 5 ≤ 2. Khẳng định này là sai. b) 8 − 2 < 12. Khẳng định này là đúng. −6 c) 3 · (−2) ≥ 9. Khẳng định này là sai. d) > 1. Khẳng định này là sai. 4 | Dạng 94. So sánh Sử dụng quy tắc cộng cả hai vế của bất đẳng thức cho cùng một số. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Cho a > b, hãy so sánh: a) a + 2 và b + 2; b) a − 5 và b − 5. L Lời giải. 1. Ta có a > b. Cộng cả hai vế của bất đẳng thức với 2, ta được a + 2 > b + 2. 2. Ta có a > b. Cộng cả hai vế của bất đẳng thức với −5, ta được a − 5 > b − 5. b Ví dụ 2. Cho a < b, hãy so sánh: a) 10 + a và 10 + b; b) a − 1 và b − 1. L Lời giải. Tài liệu Toán 8 này là của: ....................................
- 1. Liên hệ giữa thứ tự và phép cộng 258 1. Ta có a < b. Cộng cả hai vế của bất đẳng thức với 10, ta được a + 10 < b + 10. 2. Ta có a < b. Cộng cả hai vế của bất đẳng thức với −1, ta được a − 1 < b − 1. b Ví dụ 3. Cho số m tùy ý, so sánh: a) m + 2019 và m + 2018; b) 1 − m và −2 − m. L Lời giải. 1. Ta có 2019 > 2018. Cộng cả hai vế của bất đẳng thức với m, ta được 2019 + m > 2018 + m. 2. Ta có 1 > −2. Cộng cả hai vế của bất đẳng thức với −m, ta được 1 − m > −2 − m. b Ví dụ 4. Cho số m tùy ý, so sánh: a) m − 1 và m + 2; b) 2018 − m và 2019 − m. L Lời giải. 1. Ta có −1 < −2. Cộng cả hai vế của bất đẳng thức với m, ta được m − 1 < m + 2. 2. Ta có 2018 < 2019. Cộng cả hai vế của bất đẳng thức với −m, ta được 2018 − m < 2019 − m. 3 Bài tập về nhà } Bài 1. Sắp xếp các số sau từ bé đến lớn và biểu diễn trên trục số: a) 1; −3; 0; 4; b) 2; −3; 0; −2. L Lời giải. a) −3; 0; 1; 4. b) −3; −2; 0; 2. −3 0 1 4 x −3 −2 0 2 x } Bài 2. Hãy xét xem các khẳng định sau đúng hay sai? Vì sao? 1 a) −6 > −4 + (−2); b) (−4) · < 0; 4 c) (−5) + 1 ≤ 4 − (−2); d) 2 + x2 ≥ 2. L Lời giải. Giáo viên: ....................................
- Chương 4. Bất phương trình 259 1 a) Sai. Vì −6 = −4 + (−2). b) Đúng. Vì (−4) · = −1 < 0. 4 c) Đúng. Vì (−5) + 1 = −4 ≤ 6 = 4 − (−2). d) Đúng. Vì x2 ≥ 0 với mọi số thực x ⇒ 2 + x2 ≥ 2. } Bài 3. Chuyển các khẳng định sau về dạng bất đẳng thức và cho biết khẳng định đó đúng hay sai? a) Tổng của −6 và −2 nhỏ hơn hoặc bằng −5; b) Hiệu của −4 và −4 nhỏ hơn −1; c) Tích của 5 và −2 lớn hơn hoặc bằng −20; d) Thương của −8 và 8 lớn hơn 0. L Lời giải. a) −6 + (−2) ≤ −5. Khẳng định này là đúng. b) −4 − (−4) < −1. Khẳng định này là đúng. −8 c) 5 · (−2) ≥ −20. Khẳng định này là đúng. d) > 0. Khẳng định này là sai. 8 } Bài 4. Cho a > b, hãy so sánh: a) a + 12 và b + 12; b) a − 8 và b − 8. L Lời giải. 1. Ta có a > b. Cộng cả hai vế của bất đẳng thức với 12, ta được a + 12 > b + 12. 2. Ta có a > b. Cộng cả hai vế của bất đẳng thức với −8, ta được a − 8 > b − 8. } Bài 5. Cho số m tùy ý, chứng minh: a) m + 121 > m + 100; b) m − 4 < m. L Lời giải. 1. Ta có 121 > 100. Cộng cả hai vế của bất đẳng thức với m, ta được m + 121 > m + 100. 2. Ta có −4 < 0. Cộng cả hai vế của bất đẳng thức với m, ta được m − 4 < m. Tài liệu Toán 8 này là của: ....................................
- 2. Liên hệ giữa thứ tự và phép nhân 260 §2 Liên hệ giữa thứ tự và phép nhân 1 Tóm tắt lý thuyết 1.1 Liên hệ giữa thứ tự và phép nhân với số dương 1. Tính chất 2. Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương, ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho. 2. Với ba số a, b, c trong đó c > 0, ta có: Nếu a > b thì ac > bc. Tương tự cho các bất đẳng thức với dấu b thì ac < bc. Tương tự cho các bất đẳng thức với dấu b và b > c thì a > c. Tương tự cho các bất đẳng thức với dấu · (−5) ; d) 2 · (−1) + 1 ≥ 3 · 2. 2 2 L Lời giải. a) Đúng. Vì (−3) · 5 = −15 < −10 = (−2) · 5. b) Đúng. Vì 4 · (−6) = −24 ≤ −12 = 2 · (−6). Giáo viên: ....................................
- Chương 4. Bất phương trình 261 5 −25 −15 3 c) Sai. Vì · (−5) = < = · (−5). d) Sai. Vì 2 · (−1) + 1 = −1 ≤ 6 = 3 · 2. 2 2 2 2 b Ví dụ 2. Hãy xét xem các khẳng định sau đúng hay sai? Vì sao? a) 12 · 1 < 12 · 4; b) 2 · (−3) ≥ 2 · (−5) ; c) 4 · (−2) ≤ 2 · (−2) ; d) (−1) · 5 ≤ (−5) · (−1) . L Lời giải. a) Đúng. Vì 12 · 1 = 12 < 48 = 12 · 4. b) Đúng. Vì 2 · (−3) = −6 ≥ −10 = 2 · (−5). c) Đúng. Vì 4 · (−2) = −8 ≤ −4 = 2 · −2. d) Đúng. Vì (−1) · 5 = −5 ≤ (−5) · (−1). | Dạng 96. So sánh. Sử dụng tính chất cộng, nhân và tính chất bắc cầu của bất đẳng thức để so sánh hai số, hai biểu thức. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Cho a > b > 0, hãy so sánh: a) 8a và 8b; b) −3a và −3b; c) 2a + 4 và 2b + 4; d) 7 − 2a và 7 − 2b. L Lời giải. 1. Ta có a > b, Nhân cả hai vế với 8 (8 > 0), ta được 8a > 8b. 2. Ta có a > b, Nhân cả hai vế với −3 (−3 < 0), ta được −3a < −3b. 3. Ta có a > b, Nhân cả hai vế với 2 (2 > 0), ta được 2a > 2b. Tiếp theo ta cộng cả hai vế với 4, ta được 2a + 4 > 2b + 4. 4. Ta có a > b, Nhân cả hai vế với −2 (−2 < 0), ta được −2a < −2b. Tiếp theo ta cộng cả hai vế với 7, ta được 7 − 2a < 7 − 2b. b Ví dụ 2. Cho b > a > 0, hãy so sánh: a) 2a và 2b; b) −4a và −4b; c) 4a + 3 và 4b + 3; d) 1 − 6a và 1 − 6b. L Lời giải. 1. Ta có a < b, Nhân cả hai vế với 2 (2 > 0), ta được 2a < 2b. 2. Ta có a < b, Nhân cả hai vế với −4 (−4 < 0), ta được −4a > −4b. Tài liệu Toán 8 này là của: ....................................
- 2. Liên hệ giữa thứ tự và phép nhân 262 3. Ta có a < b, Nhân cả hai vế với 4 (4 > 0), ta được 4a < 4b. Tiếp theo ta cộng cả hai vế với 3, ta được 4a + 3 < 4b + 3. 4. Ta có a < b, Nhân cả hai vế với −6 (−6 < 0), ta được −6a > −6b. Tiếp theo ta cộng cả hai vế với 1, ta được 1 − 6a > 1 − 6b. b Ví dụ 3. Số b là số âm, số 0, hay số dương nếu: a) 3b > 2b; b) −2b > 3b. L Lời giải. a) Ta có 3 > 2 ⇒ b > 0. b) Ta có −2 < 3 ⇒ b < 0. b Ví dụ 4. Số b là số âm, số 0, hay số dương nếu: a) 5b > 3b; b) −3b > 3b. L Lời giải. a) Ta có 5 > 3 ⇒ b > 0. b) Ta có −3 < 3 ⇒ b < 0. b Ví dụ 5. Cho a > b > 0. So sánh: a) 5a + 3 và 5b − 3; b) 3 − 2a và 4 − 2b. L Lời giải. 1. Ta có a > b > 0 ⇒ 5a > 5b. Cộng cả hai vế với 3 ta được 5a + 3 > 5b + 3. Mặt khác ta có 5b + 3 > 5b − 3. Do đó theo tính chất bắc cầu, ta được: 5a + 3 > 5b − 3. 2. Ta có a > b > 0 ⇒ −2a < −2b. Cộng cả hai vế với 4 ta được 4 − 2a < 4 − 2b. Mặt khác ta có 3 − 2a < 4 − 2a. Do đó theo tính chất bắc cầu, ta được: 3 − 2a < 4 − 2b. b Ví dụ 6. Cho a > b > 0. So sánh: a) 2a + 5 và 2b − 1; b) 4 − a và 5 − b. L Lời giải. 1. Ta có a > b > 0 ⇒ 2a > 2b. Cộng cả hai vế với 5 ta được 2a + 5 > 2b + 5. Mặt khác ta có 2b + 5 > 2b − 1. Do đó theo tính chất bắc cầu, ta được: 2a + 5 > 2b − 1. 2. Ta có a > b > 0 ⇒ −a < −b. Cộng cả hai vế với 5 ta được 5 − a < 5 − b. Mặt khác ta có 5 − a > 4 − a. Do đó theo tính chất bắc cầu, ta được: 4 − a < 5 − b. Giáo viên: ....................................
- Chương 4. Bất phương trình 263 3 Bài tập về nhà } Bài 1. Các khẳng định sau đúng hay sai? Vì sao? a) (−2) · 4 < (−2) · 3; b) 5 · (−3) ≥ 3 · (−3); c) (−2) · (−4) > 2 · (−4); d) 4 · (−2) + 5 ≥ 3 · 4 − 21. L Lời giải. a) Đúng. Vì (−2) · 4 = −8 < −6 = (−2) · 3. b) Sai. Vì 5 · (−3) = −15 ≤ −9 = 3 · 3. c) Đúng. Vì (−2) · (−4) = 8 > −8 = 2 · (−4). d) Đúng. Vì 4·(−2)+5 = −3 ≥ −9 = 3·4−21. } Bài 2. Cho b > a > 0, hãy so sánh: a) 12a và 12b; b) −a và −b; c) 3a + 2019 và 3b + 2019; d) 10 − 3a và 10 − 3b. L Lời giải. 1. Ta có a < b, nhân cả hai vế với 12 (12 > 0), ta được 12a < 12b. 2. Ta có a < b, nhân cả hai vế với −1 (−1 < 0), ta được −a > −b. 3. Ta có a < b, nhân cả hai vế với 3 (3 > 0), ta được 3a < 3b. Tiếp theo ta cộng cả hai vế với 2019, ta được 3a + 2019 < 3b + 2019. 4. Ta có a < b, nhân cả hai vế với −3 (−3 < 0), ta được −3a > −3b. Tiếp theo ta cộng cả hai vế với 10, ta được 10 − 3a > 10 − 3b. } Bài 3. Số a là âm hay dương nếu: a) a > 4a; b) 2a < 12a. L Lời giải. a) Ta có 1 < 4 ⇒ a < 0. b) Ta có 2 < 12 ⇒ a > 0. } Bài 4. Cho a > b > 0. So sánh: a) 12a + 1 và 12b − 4; b) 2 − 9a và 5 − 9b. L Lời giải. 1. Ta có a > b > 0 ⇔ 12a > 12b. Cộng cả hai vế với 1 ta được 12a + 1 > 12b + 1. Mặt khác ta có 12b + 1 > 12b − 4. Do đó theo tính chất bắc cầu, ta được 12a + 1 > 12b − 4. 2. Ta có a > b > 0 ⇔ −9a < −9b. Cộng cả hai vế với 5 ta được 5 − 9a < 5 − 9b. Mặt khác ta có 5 − 9a > 2 − 9a. Do đó theo tính chất bắc cầu, ta được 2 − 9a < 5 − 9b. Tài liệu Toán 8 này là của: ....................................
- 3. Bất phương trình một ẩn 264 §3 Bất phương trình một ẩn 1 Tóm tắt lý thuyết 1.1 Bất phương trình một ẩn Bất phương trình một ẩn x là bất phương trình có dạng: A(x) < B(x) hoặc A(x) > B(x) hoặc A(x) ≤ B(x) hoặc A(x) ≥ B(x), trong đó A(x) và B(x) lần lượt là vế trái và vế phải của bất phương trình. Ví dụ: x + 4 ≥ 5x − 1 là một bất phương trình bậc nhất ẩn x. 1.2 Nghiệm của bất phương trình một ẩn 1. Giá trị x = a được gọi là một nghiệm của bất phương trình nếu ta thay x = a vào hai vế của bất phương trình ta thu được một bất đẳng thức đúng. 2. Tập nghiệm của bất phương trình là tập tất cả các giá trị của biến thỏa mãn bất phương trình. 3. Giải bất phương trình là tìm tập nghiệm của bất phương trình đó. 1.3 Biểu diễn tập nghiệm Giả sử a > 0. 1. {x|x > a} ( 0 x a 2. {x|x < a} ) 0 x a 3. {x|x ≥ a} [ 0 x a 4. {x|x ≤ a} ] 0 x a Trường hợp a < 0 tương tự. Giáo viên: ....................................
- Chương 4. Bất phương trình 265 1.4 Hai bất phương trình tương đương Hai bất phương trình gọi là tương đương nếu chúng có cùng tập nghiệm và dùng ” ⇔ ” để chỉ sự tương đương đó. Ví dụ: 2 > x ⇔ x < 2. 4! 15. Chú ý Hai bất phương trình cùng vô nghiệm tương đương nhau. 2 Bài tập và các dạng toán | Dạng 97. Kiểm tra x = a có là nghiệm của bất phương trình hay không? Bằng cách thay x = a vào hai vế của bất phương trình, xảy ra hai trường hợp: Nếu được một bất đẳng thức đúng thì x = a là nghiệm của bất phương trình. Nếu được một bất đẳng thức sai thì x = a không là nghiệm của bất phương trình. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Kiểm tra xem giá trị x = 2 có là nghiệm của mỗi bất phương trình sau hay không? a) x + 3 < x − 4; b) 2x − 1 > 3 − x; c) 4 − x ≤ 12x + 20; d) 2x + 1 − x ≥ 3x − 7. L Lời giải. 1. Thay x = 2 vào bất phương trình, ta được 2 + 3 < 2 − 4, hay 5 < −2. Điều này sai. Vậy x = 2 không là nghiệm của bất phương trình x + 3 < x − 4. 2. Thay x = 2 vào bất phương trình, ta được 2 · 2 − 1 > 3 − 2, hay 3 > 1. Điều này đúng. Vậy x = 2 là nghiệm của bất phương trình 2x − 1 > 3 − x. 3. Thay x = 2 vào bất phương trình, ta được 4 − 2 ≤ 12 · 2 + 20, hay 2 ≤ 44. Điều này đúng. Vậy x = 2 là nghiệm của bất phương trình 4 − x ≤ 12x + 20. 4. Thay x = 2 vào bất phương trình, ta được 2 · 2 + 1 − 2 ≥ 3 · 2 − 7, hay 3 ≥ −1. Điều này đúng. Vậy x = 2 là nghiệm của bất phương trình 2x + 1 − x ≥ 3x − 7. b Ví dụ 2. Kiểm tra xem trong các giá trị sau, giá trị nào là nghiệm của bất phương trình 5x + 2 ≥ 3x + 1. a) x = 0; b) x = 1; c) x = −3; d) x = −1. Tài liệu Toán 8 này là của: ....................................
- 3. Bất phương trình một ẩn 266 L Lời giải. 1. Thay x = 0 vào bất phương trình, ta được 5 · 0 + 2 ≥ 3 · 0 + 1, hay 2 ≥ 1. Điều này đúng. Vậy x = 0 là nghiệm của bất phương trình 5x + 2 ≥ 3x + 1. 2. Thay x = 1 vào bất phương trình, ta được 5 · 1 + 2 ≥ 3 · 1 + 1, hay 7 ≥ 4. Điều này đúng. Vậy x = 1 là nghiệm của bất phương trình 5x + 2 ≥ 3x + 1. 3. Thay x = −3 vào bất phương trình, ta được 5 · (−3) + 2 ≥ 3 · (−3) + 1, hay −13 ≥ −8. Điều này sai. Vậy x = −3 không là nghiệm của bất phương trình 5x + 2 ≥ 3x + 1. 4. Thay x = −1 vào bất phương trình, ta được 5 · (−1) + 2 ≥ 3 · (−1) + 1, hay −3 ≥ −2. Điều này sai. Vậy x = −1 không là nghiệm của bất phương trình 5x + 2 ≥ 3x + 1. | Dạng 98. Viết bằng kí hiệu tập hợp và biểu diễn tập nghiệm của bất phương trình trên trục số. Để biểu diễn tập nghiệm của bất phương trình trên trục số, ta thực hiện các bước sau: Vẽ trục số và điền các giá trị 0, giá trị nghiệm của bất phương trình trên trục số; Gạch bỏ phần không thuộc tập nghiệm, lưu ý cách dùng dấu (; ); [; ]. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Viết kí hiệu và biểu diễn tập nghiệm của bất phương trình sau trên trục số: a) x < 4; b) x > −3; c) x ≤ 0; d) x ≥ 2. L Lời giải. a) {x|x < 4}. b) {x|x > −3}. ) ) 0 4 −3 0 c) {x|x ≤ 0}. d) {x|x ≥ 2}. ] [ 0 0 2 b Ví dụ 2. Viết kí hiệu và biểu diễn tập nghiệm của bất phương trình sau trên trục số: a) x < 1; b) x > −2; c) x ≤ 3; d) x ≥ 0. L Lời giải. a) {x|x < 1}. b) {x|x > −2}. ) ) 0 1 −2 0 c) {x|x ≤ 3}. d) {x|x ≥ 0}. ] ] 0 3 0 Giáo viên: ....................................
- Chương 4. Bất phương trình 267 b Ví dụ 3. Hình vẽ dưới đây là biểu diễn tập nghiệm của bất phương trình nào? a) b) [ ) 0 3 −2 0 L Lời giải. a) {x|x ≥ 3}. b) {x|x < −2}. b Ví dụ 4. Hình vẽ dưới đây là biểu diễn tập nghiệm của bất phương trình nào? a) b) ] ( 0 2 0 L Lời giải. a) {x|x ≤ 2}. b) {x|x > 0}. 3 Bài tập về nhà } Bài 1. Kiểm tra xem giá trị x = 1 có là nghiệm của mỗi bất phương trình sau hay không? a) x − 6 ≤ x + 1; b) 2x < 4 + x; c) 9 + x > 24 − x; d) 3x + 8 − 2x ≥ 4x − 14. L Lời giải. 1. Thay x = 1 vào bất phương trình, ta được 1 − 6 ≤ 1 + 1, hay −5 ≤ 2. Điều này đúng. Vậy x = 1 là nghiệm của bất phương trình. 2. Thay x = 1 vào bất phương trình, ta được 2 · 1 < 4 + 1, hay 2 < 5. Điều này đúng. Vậy x = 1 là nghiệm của bất phương trình . 3. Thay x = 1 vào bất phương trình, ta được 9 + 1 > 24 − 1, hay 10 > 23. Điều này sai. Vậy x = 1 không là nghiệm của bất phương trình 4. Thay x = 1 vào bất phương trình, ta được 3 · 1 + 8 − 2 · 1 ≥ 4 · 1 − 14, hay 9 ≥ −10. Điều này sai. Vậy x = 1 không là nghiệm của bất phương trình } Bài 2. Viết kí hiệu và biểu diễn tập nghiệm của bất phương trình sau trên trục số: a) x < −1,5; b) x > 8; c) x ≤ 0,5; d) x ≥ −4. Tài liệu Toán 8 này là của: ....................................
- 3. Bất phương trình một ẩn 268 L Lời giải. a) {x|x < −1,5}. b) {x|x > 8}. ) ( −1,5 0 0 8 c) {x|x ≤ 0,5}. d) {x|x ≥ −4}. [ ] 0 0,5 −4 0 } Bài 3. Hình vẽ dưới đây là biểu diễn tập nghiệm của bất phương trình nào? a) b) [ ) 0 4 −1 0 L Lời giải. a) {x|x ≥ 4}. b) {x|x < −1}. Giáo viên: ....................................
- Chương 4. Bất phương trình 269 §4 Bất phương trình bậc nhất một ẩn 1 Tóm tắt lý thuyết 1.1 Bất phương trình bậc nhất một ẩn Định nghĩa 4. Bất phương trình có dạng ax+b < 0 (hoặc ax+b > 0; ax+b ≤ 0; ax+b ≥ 0) trong đó a, b là hai số đã cho và a 6= 0, được gọi là bất phương trình bậc nhất một ẩn. 1.2 Hai quy tắc biến đổi phương trình Quy tắc chuyển vế : Khi chuyển một hạng tử từ một vế của bất phương trình sang vế còn lại, ta phải đổi dấu hạng tử đó. Ví dụ: 2x + 3 < 0 ⇔ 2x < −3. Quy tắc nhân (hoặc chia) với một số khác 0: Khi nhân (hoặc chia) hai vế của bất phương trình với một số khác 0 ta phải giữ nguyên chiều của bất phương trình (nếu số đó dương) hoặc đổi chiều bất phương trình (nếu số đó âm), ta được bất phương trình mới tương đương với bất phương trình đã cho. 2 Các dạng toán | Dạng 99. Nhận dạng bất phương trình bậc nhất một ẩn Dựa vào định nghĩa bất phương trình bậc nhất một ẩn. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Hãy xét xem các bất phương trình sau có là bất phương trình bậc nhất một ẩn hay không? Vì sao? −2x + 4 a) 5x + 3 ≥ 0; b) 0x − 1 < 0; c) ≤ 0; d) x2 + 1 > 0. 3 L Lời giải. a) Có với a = 5, b = 3. b) Không vì a = 0. −2 4 c) Có với a = ,b = . d) Không phải vì x2 có bậc là 2. 3 3 Tài liệu Toán 8 này là của: ....................................
- 4. Bất phương trình bậc nhất một ẩn 270 b Ví dụ 2. Trong các bất phương trình sau đâu là bất phương trình bậc nhất một ẩn? Chỉ rõ a, b. 2 5 a) 2x − 4 > 0; b) x + ≤ 0; c) 9 − 0x ≤ 0; d) x3 − 12 ≥ 0. 3 4 L Lời giải. Bất phương trình bậc nhất một ẩn là a,b. 2 5 a) Với a = 2, b = −4. b) Với a = , b = . 3 4 c) Không vì a = 0;. d) Không vì x3 có bậc là 3. | Dạng 100. Giải bất phương trình Sử dụng các quy tắc chuyển vế hoặc nhân (chia) với một số khác 0 để giải các bất phương trình đã cho. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Giải các bất phương trình theo quy tắc chuyển vế: a) x − 9 ≤ 0; ĐS: x ≤ 9 b) x + 9 < 2; ĐS: x < −7 c) 4 − x > −2x + 5; ĐS: x > 1 d) x − 3x ≥ 4 − 3x. ĐS: x ≥ 4 L Lời giải. a) Ta có b) Ta có x − 9 ≤ 0 ⇔ x ≤ 9. x + 9 < 2 ⇔ x < −7. Vậy nghiệm của bất phương trình là x ≤ 9. Vậy nghiệm của bất phương trình là x < −7. c) Ta có d) Ta có 4 − x > −2x + 5 x − 3x ≥ 4 − 3x ⇔ −x + 2x > 5 − 4 ⇔ x − 3x + 3x ≥ 4 ⇔ x > 1. ⇔ x ≥ 4. Vậy nghiệm của bất phương trình là x > 1. Vậy nghiệm của bất phương trình là x ≥ 4. b Ví dụ 2. Giải các phương trình theo quy tắc chuyển vế: a) x − 5 ≥ 0; ĐS: x ≥ 5 b) x + 4 > 11; ĐS: x > 7 c) 1 + 2x ≤ 3 + x; ĐS: x ≤ 2 d) x + 1 − 2x < −2x − 8. ĐS: x < −9 L Lời giải. Giáo viên: ....................................
- Chương 4. Bất phương trình 271 a) Ta có b) Ta có x − 5 ≥ 0 ⇔ x ≥ 5. x + 4 > 11 ⇔ x > 7. Vậy nghiệm của bất phương trình là x ≥ 5. Vậy nghiệm của bất phương trình là x > 7. c) Ta có d) Ta có 1 + 2x ≤ 3 + x x + 1 − 2x < −2x − 8 ⇔ 2x − x ≤ 3 − 1 ⇔ x − 2x + 2x < −8 − 1 ⇔ x ≤ 2. ⇔ x < −9. Vậy nghiệm của bất phương trình là x ≤ 2. Vậy nghiệm của bất phương trình là x < −9. b Ví dụ 3. Giải các phương trình theo quy tắc nhân: 5 4 a) 4x ≤ 16; ĐS: x ≤ 4 b) x > 2; ĐS: x > 2 5 −1 25 c) x < 7; ĐS: x > −14 d) −0,4x ≥ −5. ĐS: x ≤ 2 2 L Lời giải. a) Ta có b) Ta có 4x ≤ 16 5 x>2 1 2 ⇔ x ≤ 16 · 2 4 ⇔ x>2· ⇔ x ≤ 4. 5 4 Vậy nghiệm của bất phương trình là x ≤ 4. ⇔ x> . 5 4 Vậy nghiệm của bất phương trình là x > . 5 c) Ta có d) Ta có −1 −0,4x ≥ −5 x 7 · (−2) 25 ⇔ x > −14. ⇔ x≤ . 2 Vậy nghiệm của bất phương trình là x > Vậy nghiệm của bất phương trình là x ≤ −14. 25 . 2 b Ví dụ 4. Giải các bất phương trình theo quy tắc nhân: 3 a) 2x ≥ 4; ĐS: x ≥ 2 b) x > 6; ĐS: x > 4 2 c) −3x ≤ 12; ĐS: x ≥ −4 d) −0,5x < −8. ĐS: x > 16 Tài liệu Toán 8 này là của: ....................................
- 4. Bất phương trình bậc nhất một ẩn 272 L Lời giải. a) Ta có b) Ta có 2x ≥ 4 3 x>6 ⇔ x≥4:2 2 3 ⇔ x ≥ 2. ⇔ x>6: 2 ⇔ x > 4. Vậy nghiệm của bất phương trình là x ≥ 2. Vậy nghiệm của bất phương trình là x > 4. c) Ta có d) Ta có −3x ≤ 12 −0,5x < −8 ⇔ x ≥ 12 : (−3) ⇔ x > −8 : (−0, 5) ⇔ x ≥ −4. ⇔ x > 16. Vậy nghiệm của bất phương trình là x ≥ Vậy nghiệm của bất phương trình là x > −4. 16. b Ví dụ 5. Giải các bất phương trình sau: a) 3x + 1 ≤ 16; ĐS: x ≤ 5 b) −2x − 2 > 8; ĐS: x < −5 c) 5x + 6(x + 1) > x − (x + 5);ĐS: x > −1 d) 5x(x + 1) ≥ x(5x − 1). ĐS: x ≥ 0 L Lời giải. a) Ta có b) Ta có 3x + 1 ≤ 16 −2x − 2 > 8 ⇔ 3x ≤ 16 − 1 ⇔ −2x > 8 + 2 ⇔ 3x ≤ 15 ⇔ −2x > 10 ⇔ x ≤ 5. ⇔ x < −5. Vậy nghiệm của bất phương trình là x ≤ 5 Vậy nghiệm của bất phương trình là x < −5. c) Ta có d) Ta có 5x + 6(x + 1) > x − (x + 5) 5x(x + 1) ≥ x(5x − 1) ⇔ 5x + 6x + 6 > x − x − 5 ⇔ 5x2 + 5x ≥ 5x2 − x ⇔ 5x + 6x − x + x > −5 − 6 ⇔ 5x2 + 5x − 5x2 + x ≥ 0 ⇔ 11x > −11 ⇔ 6x ≥ 0 ⇔ x > −1. ⇔ x ≥ 0. Vậy nghiệm của bất phương trình là x > Vậy nghiệm của bất phương trình là x ≥ 0. −1. Giáo viên: ....................................
- Chương 4. Bất phương trình 273 b Ví dụ 6. Giải các bất phương trình sau: a) 2x + 1 ≥ 5; ĐS: x ≥ 2 b) −2x − 8 > 8; ĐS: x < −8 c) 3x − (x − 4) ≤ x − 8; ĐS: x ≤ −12 d) x(x + 8) < x(x + 3) + 5. ĐS: x < 1 L Lời giải. a) Ta có b) Ta có 2x + 1 ≥ 5 −2x − 8 > −8 ⇔ 2x ≥ 5 − 1 ⇔ −2x > 8 + 8 ⇔ 2x ≥ 4 ⇔ −2x > 16 ⇔ x ≥ 2. ⇔ x < −8. Vậy nghiệm của bất phương trình là x ≥ 2. Vậy nghiệm của bất phương trình là x < 0. c) Ta có d) Ta có 3x − (x − 4) ≤ x − 8 x(x + 8) < x(x + 3) + 5 ⇔ 3x − x + 4 ≤ x − 8 ⇔ x2 + 8x < x2 + 3x + 5 ⇔ 3x − x − x ≤ −8 − 4 ⇔ x2 + 8x − x2 − 3x < 5 ⇔ x ≤ −12. ⇔ 5x < 5 ⇔ x < 1. Vậy nghiệm của bất phương trình là x ≤ −12. Vậy nghiệm của bất phương trình là x < 1. | Dạng 101. Biễu diển tập nghiệm trên trục số Bước 1. Giải bất phương trình bằng quy tắc chuyển vế hoặc quy tắc nhân. Bước 2. Biểu diễn nghiệm của bất phươnng trình trên trục số. ccc BÀI TẬP MẪU ccc b Ví dụ 1. Giải bất phương trình và biểu diễn nghiệm trên trục số: a) 3x − 8 ≥ 1; ĐS: ≥ 3 b) 2x − 8 > x − 1; ĐS: x > 7 c) 4x + 2 − 5x ≤ 0; ĐS: x ≥ 2 d) −x + 3 > 9 + 2x. ĐS: x < −2. L Lời giải. Tài liệu Toán 8 này là của: ....................................
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Đại số lớp 8 - Tiết 5: Luyện tập
9 p | 18 | 10
-
Bài giảng Đại số lớp 8 - Tiết 25: Luyện tập
12 p | 19 | 9
-
Bài giảng Đại số lớp 8 - Tiết 8: Luyện tập
9 p | 21 | 7
-
Bài giảng Đại số lớp 8 - Tiết 52: Luyện tập - GV. Vũ Thị Hồng Nhung
17 p | 14 | 5
-
Bài giảng Đại số lớp 8 - Tiết 51: Giải bài toán bằng cách lập phương trình
15 p | 9 | 4
-
Bài giảng Đại số lớp 8 - Tiết 61: Bất phương trình bậc nhất một ẩn (Tiết 1)
16 p | 11 | 4
-
Bài giảng Đại số lớp 8 - Tiết 49: Phương trình chứa ẩn ở mẫu (Tiếp theo)
10 p | 10 | 3
-
Bài giảng Đại số lớp 8 - Tiết 50: Giải bài Toán bằng cách lập phương trình
14 p | 15 | 3
-
Bài giảng Đại số lớp 8 - Tiết 23: Tính chất cơ bản của phân thức
13 p | 11 | 3
-
Bài giảng Đại số lớp 8 bài 1: Mở đầu mở phương trình
12 p | 14 | 3
-
Bài giảng Đại số lớp 8 - Tiết 39: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
11 p | 9 | 3
-
Bài giảng Đại số lớp 8 - Tiết 36: Phép nhân các phân thức đại số
15 p | 14 | 3
-
Bài giảng Đại số lớp 8 - Tiết 26: Quy đồng mẫu thức nhiều phân thức
14 p | 9 | 3
-
Bài giảng Đại số lớp 8 - Tiết 19: Ôn tập chương 1
16 p | 12 | 3
-
Bài giảng Đại số lớp 8 bài 8: Phép chia các phân thức đại số
17 p | 9 | 3
-
Bài giảng Đại số lớp 8 - Tiết 9: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
8 p | 16 | 3
-
Bài giảng Đại số lớp 8 - Tiết 22: Phân thức đại số
9 p | 15 | 3
-
Bài giảng Đại số lớp 8 bài 2: Tính chất cơ bản của phân thức
17 p | 15 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn