YOMEDIA
ADSENSE
Bài giảng Giải tích III - TS. Bùi Xuân Diệu
25
lượt xem 6
download
lượt xem 6
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Bài giảng Giải tích III trang bị cho người học những kiến thức về: Đại cương về chuỗi số, chuỗi số dương, chuỗi số với số hạng có dấu bất kì, chuỗi hàm số, chuỗi lũy thừa, chuỗi fourier. Mời các bạn cùng tham khảo để biết thêm những nội dung chi tiết.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Giải tích III - TS. Bùi Xuân Diệu
- Giải tích III TS. Bùi Xuân Diệu Viện Toán Ứng dụng và Tin học, Đại học Bách Khoa Hà Nội TS. Bùi Xuân Diệu Giải tích III 1 / 53
- Chương 1: Chuỗi 1 Đại cương về chuỗi số 2 Chuỗi số dương Tiêu chuẩn tích phân Tiêu chuẩn so sánh Tiêu chuẩn D’Alambert Tiêu chuẩn Cauchy 3 Chuỗi số với số hạng có dấu bất kì Chuỗi hội tụ tuyệt đối, bán hội tụ Chuỗi đan dấu 4 Chuỗi hàm số Chuỗi hàm số hội tụ Chuỗi hàm số hội tụ đều 5 Chuỗi lũy thừa Các tính chất của chuỗi lũy thừa Khai triển một hàm số thành chuỗi lũy thừa 6 Chuỗi Fourier Chuỗi lượng giác TS. Bùi Xuân Diệu Giải tích III 2 / 53
- Đại cương về chuỗi số Chương 1: Chuỗi 1 Đại cương về chuỗi số 2 Chuỗi số dương Tiêu chuẩn tích phân Tiêu chuẩn so sánh Tiêu chuẩn D’Alambert Tiêu chuẩn Cauchy 3 Chuỗi số với số hạng có dấu bất kì Chuỗi hội tụ tuyệt đối, bán hội tụ Chuỗi đan dấu 4 Chuỗi hàm số Chuỗi hàm số hội tụ Chuỗi hàm số hội tụ đều 5 Chuỗi lũy thừa Các tính chất của chuỗi lũy thừa Khai triển một hàm số thành chuỗi lũy thừa 6 Chuỗi Fourier Chuỗi lượng giác TS. Bùi Xuân Diệu Giải tích III 3 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Định nghĩa Cho {an }∞ n=1 là một dãy số. Tổng vô hạn a1 + a2 + · · · + an + · · · ∞ được gọi là một chuỗi số và được kí hiệu là an . Khi đó, an được gọi là P n=1 số hạng tổng quát và Sn = a1 + a2 + · · · + an được gọi là tổng riêng thứ n. TS. Bùi Xuân Diệu Giải tích III 4 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Định nghĩa Cho {an }∞ n=1 là một dãy số. Tổng vô hạn a1 + a2 + · · · + an + · · · ∞ được gọi là một chuỗi số và được kí hiệu là an . Khi đó, an được gọi là P n=1 số hạng tổng quát và Sn = a1 + a2 + · · · + an được gọi là tổng riêng thứ n. Nếu như dãy số {Sn } là hội tụ và lim Sn = S tồn tại, thì ta nói n→∞ ∞ ∞ chuỗi số an là hội tụ và có tổng bằng S và viết P P an = S. n=1 n=1 ∞ Nếu dãy số {Sn } là phân kỳ thì ta nói chuỗi số an là phân kỳ. P n=1 TS. Bùi Xuân Diệu Giải tích III 4 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Ví dụ Chúng ta bắt đầu với khoảng [0, 1]. Sau đó chúng ta chia đôi khoảng này ra thì ta được hai khoảng là [0, 1/2] và (1/2, 1], mỗi khoảng có độ dài bằng 1/2. Sau đó ta lại tiếp tục chia đôi khoảng [0, 1/2], thì ta sẽ được hai khoảng, mỗi khoảng có độ dài bằng 1/4. Tiếp tục kéo dài quá trình này ta sẽ được chuỗi số sau: 1 1 1 1= + + ··· + n + ··· 2 4 2 TS. Bùi Xuân Diệu Giải tích III 5 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Ví dụ Xét sự hội tụ và tính tổng (nếu có) của chuỗi cấp số nhân ∞ qn = 1 + q + q2 + · · · . P n=0 TS. Bùi Xuân Diệu Giải tích III 6 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Ví dụ Xét sự hội tụ và tính tổng (nếu có) của chuỗi cấp số nhân ∞ qn = 1 + q + q2 + · · · . P n=0 Ví dụ ∞ 1 Chứng minh rằng chuỗi số sau hội tụ và tính n(n+1) . P n=1 TS. Bùi Xuân Diệu Giải tích III 6 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Ví dụ Xét sự hội tụ và tính tổng (nếu có) của chuỗi cấp số nhân ∞ qn = 1 + q + q2 + · · · . P n=0 Ví dụ ∞ 1 Chứng minh rằng chuỗi số sau hội tụ và tính n(n+1) . P n=1 Ví dụ ∞ 1 Chứng minh rằng chuỗi điều hòa là phân kì. P n n=1 TS. Bùi Xuân Diệu Giải tích III 6 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Định lý (Điều kiện cần để chuỗi hội tụ) ∞ Nếu chuỗi số an là hội tụ, thì lim an = 0. P n=1 n→+∞ TS. Bùi Xuân Diệu Giải tích III 7 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Định lý (Điều kiện cần để chuỗi hội tụ) ∞ Nếu chuỗi số an là hội tụ, thì lim an = 0. P n=1 n→+∞ Chú ý: Mệnh đề đảo của Định lý trên là không đúng, i.e., nếu lim an = 0 n→+∞ ∞ ∞ 1 thì chưa chắc chuỗi an hội tụ. Ví dụ, chuỗi điều hòa n. P P n=1 n=1 TS. Bùi Xuân Diệu Giải tích III 7 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Định lý (Điều kiện cần để chuỗi hội tụ) ∞ Nếu chuỗi số an là hội tụ, thì lim an = 0. P n=1 n→+∞ Chú ý: Mệnh đề đảo của Định lý trên là không đúng, i.e., nếu lim an = 0 n→+∞ ∞ ∞ 1 thì chưa chắc chuỗi an hội tụ. Ví dụ, chuỗi điều hòa n. P P n=1 n=1 Điều kiện đủ để kiểm tra một chuỗi là phân kỳ: nếu lim an không n→+∞ tồn tại hoặc lim an 6= 0 thì chuỗi đã cho là phân kỳ. Ví dụ, xét n→+∞ ∞ chuỗi 2n+1 . n P n=1 TS. Bùi Xuân Diệu Giải tích III 7 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Định lý (Điều kiện cần để chuỗi hội tụ) ∞ Nếu chuỗi số an là hội tụ, thì lim an = 0. P n=1 n→+∞ Chú ý: Mệnh đề đảo của Định lý trên là không đúng, i.e., nếu lim an = 0 n→+∞ ∞ ∞ 1 thì chưa chắc chuỗi an hội tụ. Ví dụ, chuỗi điều hòa n. P P n=1 n=1 Điều kiện đủ để kiểm tra một chuỗi là phân kỳ: nếu lim an không n→+∞ tồn tại hoặc lim an 6= 0 thì chuỗi đã cho là phân kỳ. Ví dụ, xét n→+∞ ∞ chuỗi 2n+1 . n P n=1 Thay đổi một số số hạng đầu tiên của một chuỗi thì không làm ảnh hưởng đến tính hội tụ hay phân kì của chuỗi số đó. TS. Bùi Xuân Diệu Giải tích III 7 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Các phép toán trên chuỗi số hội tụ ∞ ∞ ∞ Nếu an và bn là các chuỗi số hội tụ, thì (αan + βbn ) cũng là P P P n=1 n=1 n=1 ∞ ∞ ∞ một chuỗi số hội tụ và P P P (αan + βbn ) = α an + β bn . n=1 n=1 n=1 TS. Bùi Xuân Diệu Giải tích III 8 / 53
- Đại cương về chuỗi số Đại cương về chuỗi số Các phép toán trên chuỗi số hội tụ ∞ ∞ ∞ Nếu an và bn là các chuỗi số hội tụ, thì (αan + βbn ) cũng là P P P n=1 n=1 n=1 ∞ ∞ ∞ một chuỗi số hội tụ và P P P (αan + βbn ) = α an + β bn . n=1 n=1 n=1 Ví dụ Xét xem chuỗi sau đây là hội tụ hay phân kỳ. Nếu nó hội tụ, tính tổng. ∞ ∞ ∞ X 2 X n X en a) 2 b) ln c) n −1 n+1 n3 n=1 n=1 n=1 ∞ 2 ∞ ∞ n +1 1 1 X X X d) ln e) 2 n f) 2n2 + 3 1+ n3 −n n=1 n=1 3 n=1 TS. Bùi Xuân Diệu Giải tích III 8 / 53
- Chuỗi số dương Chương 1: Chuỗi 1 Đại cương về chuỗi số 2 Chuỗi số dương Tiêu chuẩn tích phân Tiêu chuẩn so sánh Tiêu chuẩn D’Alambert Tiêu chuẩn Cauchy 3 Chuỗi số với số hạng có dấu bất kì Chuỗi hội tụ tuyệt đối, bán hội tụ Chuỗi đan dấu 4 Chuỗi hàm số Chuỗi hàm số hội tụ Chuỗi hàm số hội tụ đều 5 Chuỗi lũy thừa Các tính chất của chuỗi lũy thừa Khai triển một hàm số thành chuỗi lũy thừa 6 Chuỗi Fourier Chuỗi lượng giác TS. Bùi Xuân Diệu Giải tích III 9 / 53
- Chuỗi số dương Tiêu chuẩn tích phân Chuỗi số dương Định nghĩa ∞ Chuỗi số an với an > 0 được gọi là một là chuỗi số dương. P n=1 ∞ Nhận xét: Tiêu chuẩn đơn điệu bị chặn an hội tụ ⇔ Sn bị chặn. P n=1 TS. Bùi Xuân Diệu Giải tích III 10 / 53
- Chuỗi số dương Tiêu chuẩn tích phân Chuỗi số dương Định nghĩa ∞ Chuỗi số an với an > 0 được gọi là một là chuỗi số dương. P n=1 ∞ Nhận xét: Tiêu chuẩn đơn điệu bị chặn an hội tụ ⇔ Sn bị chặn. P n=1 Định lý (Tiêu chuẩn tích phân) Cho f (x) là một hàm số liên tục, dương, giảm trên đoạn [1, ∞) và ∞ an = f (n). Khi đó chuỗi số an và tích phân suy rộng 1 f (x)dx có P R∞ n=1 cùng tính chất hội tụ hoặc phân kỳ. TS. Bùi Xuân Diệu Giải tích III 10 / 53
- Chuỗi số dương Tiêu chuẩn tích phân Chuỗi số dương Định nghĩa ∞ Chuỗi số an với an > 0 được gọi là một là chuỗi số dương. P n=1 ∞ Nhận xét: Tiêu chuẩn đơn điệu bị chặn an hội tụ ⇔ Sn bị chặn. P n=1 Định lý (Tiêu chuẩn tích phân) Cho f (x) là một hàm số liên tục, dương, giảm trên đoạn [1, ∞) và ∞ an = f (n). Khi đó chuỗi số an và tích phân suy rộng 1 f (x)dx có P R∞ n=1 cùng tính chất hội tụ hoặc phân kỳ.Nói cách khác, ∞ 1 Nếu là hội tụ thì an cũng là hội tụ. R∞ P 1 f (x)dx n=1 ∞ Nếu f (x)dx là phân kỳ thì an cũng là phân kỳ. R∞ P 2 1 n=1 TS. Bùi Xuân Diệu Giải tích III 10 / 53
- Chuỗi số dương Tiêu chuẩn tích phân Tiêu chuẩn tích phân Ví dụ ∞ ∞ 1 1 Xét sự hội tụ của các chuỗi a) b) (α > 0). P P 1+n2 nα n=1 n=1 TS. Bùi Xuân Diệu Giải tích III 11 / 53
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn