intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Kinh tế lượng 1: Chương 5 - Bùi Dương Hải (2018)

Chia sẻ: Minh Hoa | Ngày: | Loại File: PDF | Số trang:43

59
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng "Kinh tế lượng 1 - Chương 5: Kiểm định và lựa chọn mô hình" cung cấp cho người học các kiến thức: Cơ sở đánh giá lựa chọn, kỳ vọng sai số ngẫu nhiên khác 0, phương sai sai số thay đổi, sai số ngẫu nhiên không phân phối chuẩn,... Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Kinh tế lượng 1: Chương 5 - Bùi Dương Hải (2018)

  1. Chương 5. KIỂM ĐỊNH LỰA CHỌN MÔ HÌNH ▪ Các phân tích suy diễn dựa trên các giả thiết OLS ▪ Nếu các giả thiết không được thỏa mãn thì các tính chất có thể bị ảnh hưởng, các suy diễn có thể sai ▪ Để đảm bảo việc sử dụng các ước lượng là đúng đắn, cần đánh giá mô hình qua các kiểm định về các giả thuyết KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 135
  2. Chương 5. Kiểm định và lựa chọn mô hình NỘI DUNG CHƯƠNG 5 ▪ 5.1. Cơ sở đánh giá lựa chọn ▪ 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 ▪ 5.3. Phương sai sai số thay đổi ▪ 5.4. Sai số ngẫu nhiên không phân phối chuẩn ▪ 5.5. Đa cộng tuyến ▪ 5.6. Biến không thích hợp KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 136
  3. Chương 5. Kiểm định và lựa chọn mô hình 5.1. CƠ SỞ ĐÁNH GIÁ ▪ Mô hình gốc: Y = β1 + β2X2 + β3X3 + u ▪ Về mặt lý thuyết kinh tế: • Biến độc lập có ý nghĩa, có trong lý thuyết • Dạng hàm phù hợp lý thuyết • Dấu hệ số phù hợp lý thuyết KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 137
  4. Chương 5. Kiểm định và lựa chọn mô hình 5.1. Cơ sở đánh giá Cơ sở đánh giá về thống kê ▪ Về mặt thống kê: ước lượng là không chệch hiệu quả và phân tích suy diễn là chính xác, đáng tin cậy • Giả thiết 2: Kỳ vọng sai số: E(u | X) = 0 • Giả thiết 3: Phương sai sai số: Var(u | X)  σ2 • Giả thiết 4: Không có quan hệ cộng tuyến • Giả thiết 5: Sai số phân phối chuẩn KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 138
  5. Chương 5. Kiểm định và lựa chọn mô hình 5.1. Cơ sở đánh giá Ví dụ 5.1 ▪ Với Y là sản lượng, K là vốn, L là lao động, so sánh hai mô hình sau như thế nào? ▪ Mô hình [1]: 𝑌෠𝑖 = −486 + 1,29𝐾𝑖 + 2,21𝐿𝑖 Se (95,86) (0,04) (0,05) R2 = 0,964 Prob. [0.00] [0.00] [0.00] ▪ Mô hình [2]: ෣𝑖 ) = 0,417 + 0,62ln(𝐾𝑖 ) + 0,48ln(𝐿𝑖 ) ln(𝑌 Se (0,114) (0,015) (0,006) R2 = 0,988 Prob. [0.00] [0.00] [0.00] KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 139
  6. Chương 5. Kiểm định và lựa chọn mô hình 5.2. KỲ VỌNG SAI SỐ NGẪU NHIÊN KHÁC 0 ▪ Xét mô hình gốc: Y = β1 + β2X2 + β3X3 + u ▪ Giả thiết 2: E(u | X2, X3)=0 ▪ Suy ra: E(u) = 0 và Corr(Xj, u) = 0 ▪ Nếu giả thiết bị vi phạm, ước lượng mất tính không chệch KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 140
  7. Chương 5. Kiểm định và lựa chọn mô hình 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 Nguyên nhân và hậu quả ▪ Nguyên nhân • Mô hình thiếu biến quan trọng • Dạng hàm sai • Tính tác động đồng thời của số liệu • Sai số đo lường của các biến độc lập ▪ Hậu quả: • Ước lượng OLS là ước lượng chệch • Các suy diễn không đáng tin cậy KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 141
  8. Chương 5. Kiểm định và lựa chọn mô hình 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 Ước lượng chệch khi thiếu biến ▪ Mô hình đủ biến: Y = β1 + β2X2 + β3X3 + u ▪ Mô hình thiếu biến: Y = β1 + β2X2 + u ▪ Dùng MH thiếu biến thì ước lượng β2 bị chệch X2 X3 tương quan dương X2 X3 tương quan âm r23 > 0 r23 < 0 ƯL 2 chệch lên ƯL 2 chệch xuống 3 > 0 𝐸 𝛽መ2 > 𝛽2 𝐸 𝛽መ2 < 𝛽2 ƯL 2 chệch xuống ƯL 2 chệch lên 3 < 0 𝐸 𝛽መ2 < 𝛽2 𝐸 𝛽መ2 > 𝛽2 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 142
  9. Chương 5. Kiểm định và lựa chọn mô hình 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 Phát hiện mô hình bỏ sót biến ▪ Nếu số liệu có sẵn các biến: đưa vào và kiểm định bởi kiểm định T, F ▪ Nếu không có sẵn các biến: dựa trên các biến có sẵn, các biến được tạo ra từ kết quả ước lượng để đưa vào mô hình: • Các biến bậc cao của biến độc lập có sẵn • Các biến căn, nghịch đảo (cần phù hợp lý thuyết) • Từ ước lượng của biến phụ thuộc KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 143
  10. Chương 5. Kiểm định và lựa chọn mô hình 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 Kiểm định Ramsey (RESET) ▪ Xét mô hình: Y = 1 + 2X2 + 3X3 + u (1) ▪ Ước lượng (1) thu được Ŷ, thêm vào (1) được: Y = (1 + 2X2 + 3X3) + 1Ŷ 2 +…+ mŶ m+1 + u (2) H0: 1 =… = m = 0 H1: Ít nhất một hệ số j ≠ 0 (j = 1,…, m) Hay: H0: MH (1) dạng hàm đúng, không thiếu biến H1: MH (1) dạng hàm sai, thiếu biến ▪ Dùng kiểm định F, 2, hoặc T (khi thêm 1 biến) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 144
  11. Chương 5. Kiểm định và lựa chọn mô hình 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 Ví dụ 5.2 (a): Y phụ thuộc L Dependent Variable: Y Included observations: 100 Variable Coefficient Std. Error t-Statistic Prob. C 1862.909 160.7195 11.59105 0.0000 L 2.133128 0.157928 13.50698 0.0000 R-squared 0.650547 Mean dependent var 3707.680 F-statistic 182.4384 Prob(F-statistic) 0.000000 Ramsey RESET Test Specification: Y C L Omitted Variables: Squares of fitted values Value df Probability t-statistic 3.132948 97 0.0023 F-statistic 9.815365 (1, 97) 0.0023 Likelihood KINH TẾ LƯỢNG 1ratio 9.639081 – Bộ môn Toán kinh tế – NEU 1 0.0019 – www.mfe.edu.vn 145
  12. Chương 5. Kiểm định và lựa chọn mô hình 5.2. Kỳ vọng sai số ngẫu nhiên khác 0 Ví dụ 5.2 (b): Y phụ thuộc K, L Dependent Variable: Y Included observations: 100 Variable Coefficient Std. Error t-Statistic Prob. C -485.9608 95.85601 -5.069695 0.0000 K 1.292811 0.044404 29.11470 0.0000 L 2.214092 0.050943 43.46253 0.0000 R-squared 0.964118 Mean dependent var 3707.680 F-statistic 1303.136 Prob(F-statistic) 0.000000 Ramsey RESET Test Specification: Y C K L Omitted Variables: Squares of fitted values Value df Probability t-statistic 0.078562 96 0.9375 F-statistic 0.006172 (1, 96) 0.9375 Likelihood ratio 0.006429 1 0.9361 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 146
  13. Chương 5. Kiểm định và lựa chọn mô hình 5.1. Kỳ vọng sai số ngẫu nhiên khác 0 Một số biện pháp khắc phục ▪ Nếu thiếu biến: thêm biến độc lập (có thể là mũ bậc cao của biến đang có) ▪ Nếu dạng hàm sai: đổi dạng hàm ▪ Dùng biến đại diện (proxy): Nếu thiếu biến Z nhưng có Z* là đại diện cho Z và có tương quan với Z thì dùng để thay thế ▪ Sử dụng biến công cụ (instrumental variable) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 147
  14. Chương 5. Kiểm định và lựa chọn mô hình 5.3. PHƯƠNG SAI SAI SỐ THAY ĐỔI ▪ Mô hình: Y = 1 + 2X2 +3 X3 + u ▪ Giả thiết 3: Phương sai sai số ngẫu nhiên không đổi (homoscedasticity) Var(u | X2i , X3i)  σ2 ▪ Nếu giả thiết bị vi phạm: Var(u | X2i , X3i)  Var(u | X2i* , X3i*) Mô hình có phương sai sai số (PSSS) thay đổi (heteroskedasticity) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 148
  15. Chương 5. Kiểm định và lựa chọn mô hình 5.3. Phương sai sai số thay đổi Nguyên nhân - Hậu quả của PSSS thay đổi ▪ Nguyên nhân: • Bản chất số liệu • Thiếu biến quan trọng, dạng hàm sai ▪ Hậu quả • Các ước lượng OLS vẫn là không chệch • Phương sai của ước lượng hệ số là chệch • Sai số chuẩn SE là chệch • Khoảng tin cậy, kiểm định T có thể sai • Các ước lượng OLS không còn là ước lượng hiệu quả, không phải tốt nhất KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 149
  16. Chương 5. Kiểm định và lựa chọn mô hình 5.3. Phương sai sai số thay đổi Kiểm định phát hiện PSSS thay đổi ▪ Var(u | X2i , X3i) = E(u | X2i , X3i)2 chưa biết, dùng bình phương phần dư ei2 đại diện ▪ Có thể dùng đồ thị phần dư ▪ Ý tưởng kiểm định: Cho rằng yếu tố nào là nguyên nhân, thì hồi quy ei2 theo yếu tố đó. ▪ Nếu hệ số góc của hồi quy phụ có ý nghĩa → ei2 thay đổi theo đó → PSSS thay đổi ▪ Có thể khắc phục theo yếu tố đã kiểm định KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 150
  17. Chương 5. Kiểm định và lựa chọn mô hình 5.3. Phương sai sai số thay đổi Kiểm định BPG ▪ Mô hình ban đầu: Y = 1 + 2X2 +3 X3 + u (1) ▪ Ước lượng thu được phần dư ei ▪ Hồi quy phụ: ei2 = 1 + 2X2i + 3X3i + vi H0: 2 = 3 = 0 H1: 22 + 32  0 2 ▪ Dùng kiểm định F, tính với 𝑅(hồi quy phụ) 2 ▪ Kiểm định 𝜒 2 : 𝜒 2 = 𝑛 × 𝑅(hồi quy phụ) , bậc tự do = k ▪ Nếu bác bỏ H0: MH (1) có PSSS thay đổi KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 151
  18. Chương 5. Kiểm định và lựa chọn mô hình 5.3. Phương sai sai số thay đổi Kiểm định White ▪ Mô hình ban đầu: Y = 1 + 2X2 +3 X3 + u (1) ▪ Kiểm định không có tích chéo thì hồi quy phụ: 𝑒 2 = 𝛼1 + 𝛼2 𝑋2 + 𝛼3 𝑋3 + 𝛼4 𝑋22 + 𝛼5 𝑋32 + 𝑣 ▪ Kiểm định có tích chéo: 𝑒 2 = 𝛼1 + 𝛼2 𝑋2 + 𝛼3 𝑋3 + 𝛼4 𝑋22 + 𝛼5 𝑋32 + 𝜶𝟔 𝑿𝟐 𝑿𝟑 + 𝑣 ▪ Nếu có j  0 (j  1) thì MH (1) có phương sai sai số thay đổi ▪ Dùng kiểm định F hoặc 𝜒 2 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 152
  19. Chương 5. Kiểm định và lựa chọn mô hình 5.3. Phương sai sai số thay đổi Kiểm định khác ▪ Kiểm định Harvey: ln(ei2 ) = 1 + 2X2i + 3X3i + (…) + vi ▪ Kiểm định Gleijer: | ei | = 1 + 2X2i + 3X3i + (…) + vi ▪ Kiểm định Park: ln(ei2 ) = 1 + 2ln(X2i ) + 3ln(X3i ) + vi ▪ Kiểm định Koenker-Bass ei2 = 1 + 2 Ŷi2 + vi KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 153
  20. Chương 5. Kiểm định và lựa chọn mô hình 5.3. Phương sai sai số thay đổi Ví dụ 5.3 (a): Y phụ thuộc K, L Dependent Variable: Y Included observations: 100 Variable Coefficient Std. Error t-Statistic Prob. C -485.9608 95.85601 -5.069695 0.0000 K 1.292811 0.044404 29.11470 0.0000 L 2.214092 0.050943 43.46253 0.0000 R-squared 0.964118 Prob(F-statistic) 0.000000 E2 600,000 500,000 400,000 300,000 200,000 100,000 0 10 20 30 40 50 60 70 80 90 100 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 154
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0