Bài giảng môn xử lý tín hiệu số
lượt xem 21
download
Tín hiệu là biểu hiện vật lý của thông tin. Về mặt toán, tín hiệu là hàm của một hoặc nhiều biến độc lập. Các biến độc lập có thể là: thời gian, áp suất, độ cao, nhiệt độ… Biến độc lập thường gặp là thời gian. Trong giáo trình sẽ chỉ xét trường hợp này. Một ví dụ về tín hiệu có biến độc lập là thời gian: tín hiệu điện tim.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng môn xử lý tín hiệu số
- XỬ LÝ TÍN HIỆU SỐ 1
- TÀI LIỆU THAM KHẢO Bài giảng này ! • Xử lý tín hiệu số • Xử lý tín hiệu số và lọc số… 2
- Chương 1 TÍN HIỆU VÀ HỆ THỐNG RỜI RẠC 3
- Những nội dung cần nắm vững: Chương 1 • Các tín hiệu rời rạc đặc biệt (xung đơn vị, bậc đơn vị, hàm mũ, tuần hoàn) • Các phép toán với tín hiệu rời rạc (nhân với hệ số, cộng, phép dịch) • Quan hệ vào-ra với hệ TT-BB: – Tín hiệu vào (tác động), tín hiệu ra (đáp ứng), đáp ứng xung – Cách tính tổng chập y(n) = x(n) * h(n) • Các tính chất của hệ TT-BB – … nhân quả, ổn định • Quan hệ vào-ra thông qua PT-SP-TT-HSH • Hệ TT-BB xét trong miền tần số: – Đáp ứng tần số (đáp ứng biên độ, đáp ứng pha) – Phổ tín hiệu (phổ biên độ, phổ pha) 4
- Những nội dung cần nắm vững: Chương 2 • Định nghĩa biến đổi z (1 phía, 2 phía) • Miền hội tụ của biến đổi z • Các tính chất của biến đổi z • Phương pháp tính biến đổi z ngược (phân tích thành các phân thức hữu tỉ đơn giản…) • Cách tra cứu bảng công thức biến đổi z • Ứng dụng biến đổi z 1 phía để giải PT-SP • Xét tính nhân quả và ổn định thông qua hàm truyền đạt H(z). 5
- Những nội dung cần nắm vững: Chương 3 • Phân loại bộ lọc số (FIR, IIR) • Phương pháp thực hiện bộ lọc số (phần cứng, phần mềm): - Sơ đồ khối - Lập trình để giải PT-SP Các thuộc tính của bộ lọc: Nhân quả, ổn định, hàm truyền đạt, đáp ứng xung, đáp ứng tần số (biên độ, pha), tính chất lọc (thông cao, thông thấp, thông dải, chắn dải) 6
- Miền thời gian Mặt phẳng z Miền tần số T.h. vào x(n) X(z)= Z[x(n)] Phổ X(ejw)=F[x(n)] T.h. ra y(n) Phổ Y(ejw)=F[y(n)] Y(z)= Z[y(n)] Đáp ứng xung h(n) Đáp ứng tần số H(z)=Z[h(n)]= H(ejw)= Y(ejw)/ X(ejw) Y(z)/X(z) =F[h(n)] Y(z) = X(z). H(z) y(n) = x(n) * h(n) Y(ejw)= X(ejw). H(ejw) Nhân quả Nhân quả: Ổn định Ổn định: (thể hiện qua đáp (Vị trí của điểm cực ứng xung) của H(z) so với đường tròn đơn vị) 7
- 1.1 Khái niệm và phân loại • Tín hiệu là biểu hiện vật lý của thông tin • Về mặt toán, tín hiệu là hàm của một hoặc nhiều biến độc lập. Các biến độc lập có thể là: thời gian, áp suất, độ cao, nhiệt độ… • Biến độc lập thường gặp là thời gian. Trong giáo trình sẽ chỉ xét trường hợp này. • Một ví dụ về tín hiệu có biến độc lập là thời gian: tín hiệu điện tim. 8
- • Phân loại: Xét trường hợp tín hiệu là hàm của biến thời gian x(n) Tín hiệu tương tự: biên độ (hàm), thời gian (biến) đều liên tục. Ví dụ: x(t) Tín hiệu rời rạc: biên độ liên tục, thời gian rời rạc. Ví dụ: x(n) 9
- Phân loại tín hiệu Thời gian rời rạc Thời gian liên tục Tín hiệu tương tự Tín hiệu rời rạc Biên độ liêntục Biên độ rời rạc Tín hiệu lượng tử hóa Tín hiệu số 10
- Xử lý số tín hiệu Tín hiệu số Lấy mẫu & Xử lý Biến đổi Tín hiệu Tín hiệu tương tự tương tự biến đổi tín hiệu số tương tự-số số tương tự DAC ADC 11
- Tại sao lại tín hiệu số ? • Để có thể xử lý tự động (bằng máy tính) • Giảm được nhiễu • Cho phép sao lưu nhiều lần mà chất lượng không thay đổi • Các bộ xử lý tín hiệu số (DSP) khi được chế tạo hàng loạt có chất lượng xử lý đồng nhất và chất lượng xử lý không thay đổi theo thời gian 12
- Biến đổi tương tự-số • Lấy mẫu sau đó lượng tử hóa Lấy mẫu (rời rạc hóa thời gian) Chu kỳ lấy mẫu Ts Tần số lấy mẫu Fs = 1/Ts Lượng tử hóa (rời rạc hóa biên độ) Fs >= 2Fmax (Fmax: tần số lớn nhất của tín hiệu) Định lý Shannon (lấy mẫu) 13
- 1.2 Ký hiệu tín hiệu rời rạc • Dãy giá trị thực hoặc phức với phần tử thứ n là x(n), -∞
- Một số tín hiệu rời rạc đặc biệt • Xung đơn vị n0 1 (n) n0 0 δ (n) 1 5n -5 -4 -3 -2 -1 0 1 2 3 4 15
- • Tín hiệu bậc đơn vị u(n) 1 n 0 0 n
- • Tín hiệu hàm mũ x(n)=an n -5 -4 -3 -2 -1 0 1 2 3 4 5 17
- • Tín hiệu tuần hoàn x(n)=x(n+N), N>0: chu kỳ x(n) x(n)=sin[(2π/N)(n+n0)] 18
- 1.3. Các phép toán với tín hiệu rời rạc • Phép nhân 2 tín hiệu rời rạc y(n) x(n) x(n).y(n) • Phép nhân tín hiệu rời rạc với hệ số α α x(n) x(n) 19
- 1.3. Các phép toán với tín hiệu rời rạc • Phép cộng 2 tín hiệu rời rạc y(n) x(n) x(n)+y(n) • Phép dịch nếu dịch phải n0 mẫu, x(n) trở thành y(n) y(n) = x(n-n0) 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
BÀI GIẢNG MÔN HỌC XỬ LÝ TÍN HIỆU SỐ
299 p | 215 | 63
-
Bài giảng Kỹ thuật số (chương 10)
20 p | 184 | 57
-
Bài giảng môn truyền dẫn vô tuyến số - Chương 4
27 p | 246 | 55
-
Bài giảng xử lý tin hiêu số - Ts.Đặng Hoài Bắc
162 p | 252 | 45
-
Đề cương môn học thông tin số
6 p | 239 | 35
-
Bài giảng môn truyền dẫn vô tuyến số - Chương 1
39 p | 151 | 23
-
Bài giảng môn Xử lý tín hiệu số - Lã Thế Vinh
0 p | 109 | 14
-
Bài giảng Xử lý số tín hiệu - Chương 0: Giới thiệu môn học
14 p | 99 | 10
-
Bài giảng Xử lý số tín hiệu - Chương 1: Lấy mẫu, khôi phục tín hiệu
31 p | 88 | 7
-
Bài giảng Xử lý tín hiệu nâng cao (Advanced signal processing) - Chương 7: Bài tập thực hành
16 p | 79 | 6
-
Bài giảng Nhập môn cơ điện tử: Chương 6 - TS. Nguyễn Anh Tuấn
16 p | 14 | 5
-
Bài giảng Xử lý tín hiệu nâng cao (Advanced signal processing) - Chương: Ôn tập
16 p | 86 | 5
-
Bài giảng Xử lý tín hiệu số - Chương giới thiệu
6 p | 39 | 5
-
Bài giảng Xử lý số tín hiệu: Giới thiệu môn học - TS. Chế Viết Nhật Anh
10 p | 66 | 4
-
Bài giảng Xử lý tín hiệu số: Chương 0 - TS. Đặng Quang Hiếu
5 p | 32 | 4
-
Bài giảng Xử lý tín hiệu số: Chương 0 - ĐH Công nghệ
6 p | 70 | 2
-
Bài giảng Xử lý tin hiệu số với FPGA: Chương 1 - Hoàng Trang
55 p | 6 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn