intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Toán rời rạc: Bài 2 - TS. Nguyễn Văn Hiệu

Chia sẻ: Le Xuan Manh | Ngày: | Loại File: PDF | Số trang:37

166
lượt xem
20
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài 2 "Bài toán đếm" thuộc bài giảng Toán rời rạc cung cấp cho các bạn những ví dụ đếm cơ bản, nguyên lý bù trừ, hoán vị lặp, tổ hợp lặp. Với các bạn chuyên ngành Toán học thì đây là tài liệu tham khảo hữu ích.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Toán rời rạc: Bài 2 - TS. Nguyễn Văn Hiệu

  1. BÀI 2 BÀI TOÁN ĐẾM Giáo viên: TS. Nguyễn Văn Hiệu Email: nvhieuqt@dut.udn.vn 1
  2. Nhắc lại Quy tắc nhân Quy tắc cộng Hoán vị Chỉnh hợp (lặp) Tổ hợp (không lặp) Tổ hợp lặp ??? 2
  3. Nôi dung 2.1. Ví dụ đếm cơ bản 2.2. Nguyên lý bù trừ 2.3. Hoán vị lặp 2.4. Tổ hợp lặp 2.5. Bài tập
  4. 2.1. Ví dụ đếm cơ bản Ví dụ 2.1 Nguyễn Văn Hiệu, 2012, Discrete Mathematics 4
  5. 2.1. Ví dụ đếm cơ bản Ví dụ 2.1 (tổng quát) A B Nguyễn Văn Hiệu, 2012, Discrete Mathematics 5
  6. 2.1. Ví dụ đếm cơ bản Ví dụ 2.1 (tổng quát) A,B n! -- n-1! -- n-1! AB BA Nguyễn Văn Hiệu, 2012, Discrete Mathematics 6
  7. 2.1. Ví dụ đếm cơ bản Ví dụ 2.2 Nguyễn Văn Hiệu, 2012, Discrete Mathematics 7
  8. 2.1. Ví dụ đếm cơ bản Ví dụ 2.3 < kiến tha mồi> (2 x 2) (2 x 3) Nguyễn Văn Hiệu, 2012, Discrete Mathematics 8
  9. 2.1. Ví dụ đếm cơ bản Ví dụ 2.3 (tổng quát) Sang phải - 1 Số đoạn sang phải: n Đi xuống - 0 Số đoạn đi xuống: m n Dãy nhị phân độ dài n+m và có đúng m bit 0 Số tập con của m phần tử của tập n+m phần tử m m C nm Nguyễn Văn Hiệu, 2012, Discrete Mathematics 9
  10. 2.2.Nguyên lý bù trừ • A1 và A2 là hai tập hưu hạn, A1 A2 ≠  N(A1  A2 ) = N(A1 ) + N(A2 ) – N(A1  A2 ) A1 A2 A1 A2 N1= N(A1 ) + N(A2) N(A1 ) + N(A2) – N(A1  A2 ) • Tổng quát: khi Ai Aj ≠  mọi i, j N(A1 …An) = N1 - N2 + … +(-1)n-1 Nn • Nk là tổng phần tử của tất cả các giao của k tập lấy từ n tập.  N1 = N(A1) + …+ N(Am) ,  ….  Nm= N(A1 A2  …  Am). Nguyễn Văn Hiệu, 2012, Discrete Mathematics 10
  11. 2.2.Nguyên lý bù trừ • Nguyên lý bù trừ – Ak tính chất nào đó cho trên X – tổng số phần tử của X không thỏa mản bất cứ tính chất Ak N(X) - N(A1 A2 …An) • Ni - là tổng số phần tử của X thỏa mản i tính chất. Tổng số phần tử thỏa mản ít nhất một tính chất Ak nào đó Nguyễn Văn Hiệu, 2012, Discrete Mathematics 11
  12. 2.2.Nguyên lý bù trừ N(A1  A2  A3) = ? A1 A1 1 1 2 1 1 2 0 3 A2 2 A3 A2 1 A3 1 1 1 1 N1 A1 1 N1 - N2 1 1 b) 1 A2 1 A3 1 1 N1 - N2 + N3 c) Nguyễn Văn Hiệu, 2012, Discrete Mathematics 12
  13. 2.2.Nguyên lý bù trừ • Ví dụ 2.2.1 Hỏi tập X={1,2,…50} có bao nhiêu số không chia hết cho bất các số 2, 3, 4 ? Ai = { x € X: x % i ==0 } i=2,3,4. A2A3A4 là tập chia hết ít nhất 1 trong 3 số N (X) - N(A2A3A4) = N- (N1 - N2 + N3 ) Nguyễn Văn Hiệu, 2012, Discrete Mathematics 13
  14. 2.2.Nguyên lý bù trừ Ta có: • N = 50 số. • N1 = N(A2 ) + N(A3 ) + N(A4) = [50/2] + [50/3] + [50/4] = 25 + 16 + 12 =53. • N2 = N(A2  A3 ) + N(A3  A4) + N(A2  A4) = [50/6] + [50/12] + [50/4] = 8 + 4 + 12 = 24. • N3 = N(A2  A3  A4) = [50/12] = 4. • Suy ra 50 – ( 53 – 24 + 4 ) = 17 số. Nguyễn Văn Hiệu, 2012, Discrete Mathematics 14
  15. 2.2.Nguyên lý bù trừ Ví dụ 2.2.2 Có bao nhiêu xâu nhị phân độ dài 10 hoặc bắt đầu bởi 00 hoặc kết thúc bởi 11? HD: 256 0 0 + 1 1 265 - 0 0 1 1 64 ------ 448 Nguyễn Văn Hiệu, 2012, Discrete Mathematics 15
  16. 2.2.Nguyên lý bù trừ • Ví dụ 2.2.3 (bài toán bỏ thư) Có n lá thư và n phong bì ghi sẳn địa chỉ. Bỏ ngẫu nhiên các lá thư vào phong bì. Hỏi xác suất để không một lá thư bỏ đúng địa chỉ. – HD: X – là tập hợp tất cả các cách bỏ thư. A k – là tính chất lá thư thứ k bỏ đúng địa chỉ. Nguyễn Văn Hiệu, 2012, Discrete Mathematics 16
  17. 2.2.Nguyên lý bù trừ • N = N - (N1 - N2 + … +(-1)n-1 Nn ) • N = n! • Nk - là số tất cả các cách bỏ thư sao cho có k lá thư đúng địa chỉ. Nk = Ckn (n-k)! = n!/k! N = n! - (n!/1! – n!/2! + … +(-1)n-1 n!/n! ) = n!(1 - 1/1! +1/2! + … +(-1)n-1/n! ) • Xác suất cần tìm: 1 - 1/1! +1/2! + … +(-1)n-1/n! Nguyễn Văn Hiệu, 2012, Discrete Mathematics 17
  18. 2.2.Nguyên lý bù trừ  Ví dụ 2.2.4  Ví dụ 2.2.5< Số người tham gia tất cả khóa học>  Ví dụ 2.2.6
  19. 2.3. Hoán vị lặp  Bài toán: Số hoán vị của n pt: – có n1 phần tử như nhau thuộc loại 1, – có n2 phần tử như nhau thuộc loại 2, – ………………………………………. , – có nk phần tử như nhau thuộc lại k.  ĐN: Một cách sắp xếp n pt trên gọi là một hoán vi lặp.  Tổng số hoán vị lặp của n phần là: n! C (n, n1 )  C (n  n1 , n2 )  ...  C (n  n1  n2  ...  nk 1 , nk )  n1 ! n2 ! ...  nk ! Nguyễn Văn Hiệu, 2012, Discrete Mathematics 19
  20. 2.3. Hoán vị lặp •Ví dụ 2.3.1. SUCCESS • 3S • 2C • 1U SUCCESS. • 1E • C(7,3)- chọn 3 chổ cho kí tự S, còn lại 4 chổ • C(4,2) – chọn 2 chổ cho kí tự C, còn 2 chổ • C(2,1)- chọn 1 chổ cho kí tự U, còn lại 1 chổ 7! • C(1,1)- chọn 1 chổ cho kí tự S 7! C (7,3)  C (4, 2)  C (2,1)  C (1,1)   420 3! 2!1!1! Nguyễn Văn Hiệu, 2012, Discrete Mathematics 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2