Bài giảng Trí tuệ nhân tạo: Bài 1+2 - Phạm Thị Anh Lê
lượt xem 8
download
Bài giảng Trí tuệ nhân tạo: Bài 1+2 - Phạm Thị Anh Lê cung cấp cho học viên những kiến thức giới thiệu về trí tuệ nhân tạo và các khái niệm cơ bản, Agent thông minh, hệ thống ứng xử, hệ thống tư duy,... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Trí tuệ nhân tạo: Bài 1+2 - Phạm Thị Anh Lê
- Khoa Công nghệ thông tin Trường Đại học Sư phạm Hà nội TRÍ TUỆ NHÂN TẠO Artificial Intelligence Phạm Thị Anh Lê Khoa CNTT - ĐHSP Hà nội TTNT. p.1
- Nội Dung Lec 1. Giới thiệu về TTNT, các khái niệm cơ bản Lec 2. Agent thông minh Lec 3. Giải quyết bài toán bằng tìm kiếm: tìm kiếm mù Lec 4. Tìm kiếm kinh nghiệm (heuristics) Lec 5. Tìm kiếm có đối thủ Lec 6. Logic mệnh đề Lec 7-8. Logic vị từ cấp một Lec 9-10. Biểu diễn tri thức bởi các luật và lập luận Lec 11-13. Lập trình logic Prolog Lec 14-15. Tri thức không chắc chắn: logic xác suất, logic mờ TTNT. p.2
- Tài liệu tham khảo: – Trí tuệ nhân tạo, by Đinh Mạnh Tường – Trí tuệ nhân tạo: các phương pháp giải quyết vấn đề và kỹ thuật xử lý tri thức, by Nguyễn Thanh Thủy – Artificial Intelligence: A Modern Approach, by Stuart Russell and Peter Norvig. (2nd ed) – Citeseer - Scientific Literature Digital Library. Artificial Intelligence-http://citeseer.nj.nec.com/ArtificialIntelligence/ - 2003 TTNT. p.3
- Overview (Giới thiệu tổng quan) General Introduction 01-Introduction. [AIMA Ch 1] Course Schedule. Homeworks, exams and grading. Course material, TAs and office hours. Why study AI? What is AI? The Turing test. Rationality. Branches of AI. Research disciplines connected to and at the foundation of AI. Brief history of AI. Challenges for the future. Overview of class syllabus. Agent 02-Intelligent Agents. [AIMA Ch 2] What is sensors effectors an intelligent agent? Examples. Doing the right thing (rational action). Performance measure. Autonomy. Environment and agent design. Structure of agents. Agent types. Reflex agents. Reactive agents. Reflex agents with state. Goal-based agents. Utility-based agents. Mobile CS 460, Lecture 1 TTNT. p.4 agents. Information agents.
- Overview (cont.) How can we solve complex problems? 03/04-Problem solving and search. [AIMA Ch 3] Example: measuring problem. Types of problems. 9l 3l 5l More example problems. Basic idea behind search Using these 3 buckets, algorithms. Complexity. Combinatorial explosion measure 7 liters of water. and NP completeness. Polynomial hierarchy. 05-Uninformed search. [AIMA Ch 3] Depth-first. Breadth-first. Uniform-cost. Depth-limited. Iterative deepening. Examples. Properties. 06/07-Informed search. [AIMA Ch 4] Best-first. A* search. Heuristics. Hill climbing. Problem of local extrema. Simulated annealing. Traveling salesperson problem CS 460, Lecture 1 TTNT. p.5
- Overview (cont.) Practical applications of search. 08/09-Game playing. [AIMA Ch 5] The minimax algorithm. Resource limitations. Aplha- beta pruning. Elements of chance and non- deterministic games. tic-tac-toe CS 460, Lecture 1 TTNT. p.6
- Overview (cont.) Towards intelligent agents 10-Agents that reason logically 1. [AIMA Ch 6] Knowledge-based agents. Logic and representation. Propositional (boolean) logic. 11-Agents that reason logically 2. [AIMA Ch 6] Inference in propositional logic. Syntax. Semantics. wumpus world Examples. CS 460, Lecture 1 TTNT. p.7
- Overview (cont.) Building knowledge-based agents: 1st Order Logic 12-First-order logic 1. [AIMA Ch 7] Syntax. Semantics. Atomic sentences. Complex sentences. Quantifiers. Examples. FOL knowledge base. Situation calculus. 13-First-order logic 2. [AIMA Ch 7] Describing actions. Planning. Action sequences. CS 460, Lecture 1 TTNT. p.8
- Overview (cont.) Representing and Organizing Knowledge 14/15-Building a knowledge base. [AIMA Ch 8] Knowledge bases. Vocabulary and rules. Ontologies. Organizing knowledge. An ontology for the sports domain Kahn & Mcleod, 2000 CS 460, Lecture 1 TTNT. p.9
- Overview (cont.) Reasoning Logically 16/17/18-Inference in first-order logic. [AIMA Ch 9] Proofs. Unification. Generalized modus ponens. Forward and backward chaining. Example of backward chaining CS 460, Lecture 1 TTNT. p.10
- Overview (cont.) Examples of Logical Reasoning Systems 19-Logical reasoning systems. [AIMA Ch 10] Indexing, retrieval and unification. The Prolog language. Theorem provers. Frame systems and semantic networks. Semantic network used in an insight generator (Duke university) CS 460, Lecture 1 TTNT. p.11
- Overview (cont.) Systems that can Plan Future Behavior 20-Planning. [AIMA Ch 11] Definition and goals. Basic representations for planning. Situation space and plan space. Examples. CS 460, Lecture 1 TTNT. p.12
- Overview (cont.) Expert Systems 21-Introduction to CLIPS. [handout] Overview of modern rule-based expert systems. Introduction to CLIPS (C Language Integrated Production System). Rules. Wildcards. Pattern matching. Pattern network. Join network. CS 460, Lecture 1 CLIPS expert system shell TTNT. p.13
- Overview (cont.) Logical Reasoning in the Presence of Uncertainty 22/23-Fuzzy logic. [Handout] Introduction to Center of gravity fuzzy logic. Linguistic Hedges. Fuzzy inference. Examples. Center of largest area CS 460, Lecture 1 TTNT. p.14
- Overview (cont.) AI with Neural networks 24/25-Neural Networks. [Handout] Introduction to perceptrons, Hopfield networks, self-organizing feature maps. How to size a network? What can neural x 1(t) networks achieve? w1 x 2(t) w2 axon y(t+1) w xn(t) 1 n CS 460, Lecture TTNT. p.15
- Overview (cont.) Evolving Intelligent Systems 26-Genetic Algorithms. [Handout] Introduction to genetic algorithms and their use in optimization problems. CS 460, Lecture 1 TTNT. p.16
- Overview (cont.) What challenges remain? 27-Towards intelligent machines. [AIMA Ch 25] The challenge of robots: with what we have learned, what hard problems remain to be solved? Different types of robots. Tasks that robots are for. Parts of robots. Architectures. Configuration spaces. Navigation and motion planning. Towards highly-capable robots. 28-Overview and summary. [all of the above] What have we learned. Where do we go from here? CS 460, Lecture 1 robotics@USC TTNT. p.17
- Artificial Intelligence? Intelligence? Trí năng, trí tuệ, trí thông minh Thế nào là Artificial intelligence? Chúng ta sẽ phân tích 4 loại quan niệm về intelligence sau: CS 460, Lecture 1 TTNT. p.18
- Trí tuệ nhân tạo là gì? “Nỗ lực tạo ra các máy tính “Việc nghiên cứu các năng lực trí biết tư duy … máy tính có ý tuệ sử dụng các mô hình tính toán thức (The exciting new effort (The study of mental faculties to make computers thinks … through the use of computational machine with minds, in the full models)” and literal sense)” (Charniak et al. 1985) (Haugeland 1985) “Nghệ thuật sáng tạo ra các “Nghiên cứu tìm cách giải thích và máy thực hiện các chức năng mô phỏng các hành vi thông minh đòi hỏi sự thông minh như khi bằng các quá trình tính toán (A field thực hiện bởi con người (The of study that seeks to explain and art of creating machines that emulate intelligent behavior in terms perform functions that require of computational processes)” intelligence when performed (Schalkol, 1990) by people)” (Kurzweil, 1990)CS 460, Lecture 1 TTNT. p.19
- Trí tuệ nhân tạo: Hệ thống tư duy như con người “Nỗ lực tạo ra các máy tính Hệ thống tư duy như con biết tư duy … máy tính có ý người thức (The exciting new effort (Systems that think to make computers thinks … machine with minds, in the full like humans) and literal sense)” (Haugeland 1985) Ví dụ: Newell&Simson (1961) phát triển GPS Con người tư duy như thế (General Problem Solving) nào? Chưa có câu trả lời bắt chước cách giải quyết chính xác trong rất nhiều các bài toán trong toán học tình huống. của con người. CS 460, Lecture 1 TTNT. p.20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Trí tuệ nhân tạo - Nguyễn Ngọc Hiếu
236 p | 160 | 25
-
Bài giảng Trí tuệ nhân tạo - Bài 1, 2: Giới thiệu về Trí tuệ nhân tạo - Agen thông minh
26 p | 187 | 12
-
Bài giảng Trí tuệ nhân tạo: Giới thiệu trí tuệ nhân tạo - TS. Đào Anh Nam
64 p | 128 | 10
-
Bài giảng Trí tuệ nhân tạo: Giải thuật di truyền - PGS.TS. Lê Thanh Hương
15 p | 122 | 10
-
Bài giảng Trí tuệ nhân tạo: Giới thiệu về trí tuệ nhân tạo - Nguyễn Nhật Quang
21 p | 139 | 9
-
Bài giảng Trí tuệ nhân tạo - Lê Thanh Hương
44 p | 61 | 9
-
Bài giảng Trí tuệ nhân tạo: Chương 1 - PGS.TS. Lê Thanh Hương
11 p | 140 | 8
-
Bài giảng Trí tuệ nhân tạo (Artificial intelligence) - Chương 1: Tổng quan
51 p | 15 | 7
-
Bài giảng Trí tuệ nhân tạo: Chương 1 - Lý Anh Tuấn
31 p | 83 | 7
-
Bài giảng Trí tuệ nhân tạo: Giới thiệu và Tác nhân thông minh - Trường Đại học Thủy Lợi
31 p | 58 | 6
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 8 – GV. Nguyễn Văn Hòa
36 p | 9 | 2
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 1 – GV. Nguyễn Văn Hòa
37 p | 11 | 2
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 2 – GV. Nguyễn Văn Hòa
41 p | 3 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 3 – GV. Nguyễn Văn Hòa
36 p | 3 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 5 – GV. Nguyễn Văn Hòa
34 p | 5 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 4 – GV. Nguyễn Văn Hòa
27 p | 3 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 6 – GV. Nguyễn Văn Hòa
30 p | 3 | 0
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 7 – GV. Nguyễn Văn Hòa
41 p | 3 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn