intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập lớn môn: Phương pháp tính - ThS. Trịnh Quốc Lương

Chia sẻ: Quân Bùi Trung | Ngày: | Loại File: PPT | Số trang:22

315
lượt xem
28
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các yêu câu được viết theo từng hàm, hàm giải cho kết quả bài toán đồng thời hiển thị các bước trung gian, các hàm đều phải có chú thích, viết chương trình chính ứng dụng các hàm để giải toàn bộ bài toán,... là những nội dung chính trong bài tập lớn môn "Phương pháp tính". Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài tập lớn môn: Phương pháp tính - ThS. Trịnh Quốc Lương

  1. BÀI TẬP LỚN MÔN PHƯƠNG PHÁP TÍNH GVC­Th.s : TRỊNH QUỐC LƯƠNG
  2. Yêu cầu chung :   Các yêu câu được viết theo từng hàm  Hàm giải cho kết quả bài toán đồng thời  hiển thị các bước trung gian  Các hàm đều phải có chú thích   Viết chương trình chính ứng dụng các  hàm để giải toàn bộ bài toán  Ứng dụng giải các ví dụ và bài tập trong  giáo trình
  3. 1. Lập trình giải gần đúng phương trình phi tuyến f(x) = 0 với f là hàm liên tục trên khoảng [a,b] bằng phương  pháp chia đôi  Viết hàm xác định tất cả các khoảng cách ly nghiêm  Viết hàm kiểm tra khoảng cách ly nghiệm  Viết hàm tìm nghiệm xn với n cho trước và tính sai  số tương ứng  Viết hàm tìm nghiệm với sai số ε cho trước
  4. 2.  Lập trình giải gần đúng phương trình phi tuyến x=g(x) với g là hàm liên tục trên khoảng [a,b] bằng  phương pháp lặp đơn  Viết hàm kiểm tra điều kiện hội tụ   Viết hàm tìm nghiệm xn với n cho trước và tính  sai số tương ứng  Viết hàm tìm nghiệm với sai số ε cho trước  Dùng công thức tiên nghiệm  Dùng công thức hậu nghiệm 
  5. 3.  Lập trình giải gần đúng phương trình phi tuyến f(x)=0 với f là hàm liên tục trên khoảng [a,b] bằng phương  pháp lặp Newton  Viết hàm kiểm tra điều kiện hội tụ   Viết hàm tìm nghiệm xn với n cho trước và tính  sai số tương ứng bằng công thức sai số tổng quát  Viết hàm tìm nghiệm với sai số ε cho trước 
  6. 4. Lập trình giải hệ phương trình tuyến tính Ax=b Bằng phương pháp Cholesky với A là ma trận vuông  cấp n  Viết hàm kiểm tra tính đối xứng  Viết hàm kiểm tra tính xác định dương  Viết hàm kiểm tra tính ổn định của hệ phương trình  Viết hàm giải hệ pt tam giác trên  Viết hàm giải hệ pt tam giác dưới  Viết hàm Phân tích A=BBT  Viết hàm giải hệ Ax=b theo Cholesky
  7. 5. Lập trình giải gần đúng hệ pt tuyến tính Ax=b bằng pp Jacobi với A là ma trận vuông cấp n  Viết hàm tính chuẩn ma trận  Viết hàm kiểm tra điều kiện hội tụ  Viết hàm tính nghiệm xnvới n cho trước và tính sai  số  Viết hàm tìm nghiệm với sai số ε cho trước  Dùng công thức tiên nghiệm  Dùng công thức hậu nghiệm
  8. 6. Lập trình giải gần đúng hệ pt tuyến tính Ax=b bằng pp Gauss­Seidel với A là ma trận vuông cấp n  Viết hàm tính chuẩn ma trận  Viết hàm kiểm tra điều kiện hội tụ  Viết hàm tính nghiệm xnvới n cho trước và tính sai  số  Viết hàm tìm nghiệm với sai số ε cho trước  Dùng công thức tiên nghiệm  Dùng công thức hậu nghiệm
  9. 7.  Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của f(x) bằng đa thức  nội suy Lagrange  Viết hàm tính đa thức nội suy Lagrange  Viết hàm tính gần đúng f(x) cho TH các điểm nút  cách đều  Viết hàm tính gần đúng f(x) cho TH các điểm nút  không cách đều  Viết hàm tính sai số 
  10. 8.  Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của f(x) bằng đa thức  nội suy Newton tiến  Viết hàm tính các tỉ sai phân và sai phân hữu hạn  Viết hàm tính gần đúng f(x) cho TH các điểm nút  cách đều  Viết hàm tính gần đúng f(x) cho TH các điểm nút  không cách đều  Viết hàm tính sai số 
  11. 9.  Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của f(x) bằng đa thức  nội suy Newton lùi  Viết hàm tính các tỉ sai phân và sai phân hữu hạn  Viết hàm tính gần đúng f(x) cho TH các điểm nút  cách đều  Viết hàm tính gần đúng f(x) cho TH các điểm nút  không cách đều  Viết hàm tính sai số 
  12. 10. Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình xây dựng Spline tự nhiên nội suy hàm f  Viết hàm tính các hệ số ak, bk, ck, dk  Viết hàm xây dựng Spline tự nhiên  Viết hàm nhập trị x, tính gần đúng f(x)
  13. 11. Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình xây dựng Spline ràng buộc nội suy hàm f   Viết hàm tính các hệ số ak, bk, ck, dk  Viết hàm xây dựng Spline ràng buộc  Viết hàm nhập trị x, tính gần đúng f(x)
  14. 12. Cho bảng số x   xo      x1       x2        . . .       xn    y ả  y Lập trình gi o      y1       yấ i bài toán x 2        . . .       y p xỉ thực nghi n ệm tìm hàm f  xấp xỉ bảng số theo pp bình phương cực tiểu cho lơp  hàm f(x) = Af1(x)+Bf2(x)  Viết hàm tìm hàm f(x) xấp xỉ bảng số theo pp  BPCT  Viết hàm tính gần đúng f(x)
  15. 13. Cho bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình giải bài toán xấp xỉ thực nghiệm tìm hàm f  xấp xỉ bảng số theo pp bình phương cực tiểu cho lơp  hàm f(x) = Af1(x)+Bf2(x)+Cf3(x)  Viết hàm tìm hàm f(x) xấp xỉ bảng số theo pp  BPCT  Viết hàm tính gần đúng f(x)
  16. 14. Cho hàm f và bảng số với các điểm  nút cách đều x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của đạo hàm f’(x) bằng  đa thức nội suy Newton tiến và lùi  Viết hàm tính đa thức nội suy Newton tiến và lùi  Viết hàm tính gần đúng f’(x)≈[Nn(1)(x)]’  Viết hàm tính gần đúng f’(x)≈[Nn(2)(x)]’
  17. 15.  Lập trình tính gần đúng tích phân bằng công thức hình thang mở rộng  Viết hàm tính gần đúng tích phân và sai số  tương ứng với n cho trước  Viết hàm nhập sai số ε, tính n và giá trị gần  đúng của tích phân tương ứng
  18. 16.  Lập trình tính gần đúng tích phân bằng công thức simpson mở rộng  Viết hàm tính gần đúng tích phân và sai số  tương ứng với n cho trước  Viết hàm nhập sai số ε, tính n và giá trị gần  đúng của tích phân tương ứng
  19. 17. Giải gần đúng bài toán Cauchy                     y’ = f(x, y),  ∀x ∈ [a,b] y(a) = y0 Bằng công thức Euler, Euler cải  tiến và  Runge­Kutta bậc 4  Tính nghiệm gần đúng {yk}  So sánh với nghiệm chính xác
  20. 18. Giải gần đúng hệ pt vi phân                 y’1 = f1(x, y1, y2)                y’2 = f2(x, y1, y2), ∀x ∈ [a,b]         y1(a) = α1, y2(a) = α2 bằng công thức Euler cải tiến và Runge Kutta Tính nghiệm gần đúng {y1k}, {y2k}  So sánh với nghiệm chính xác 
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2