Báo cáo Thực hành lý thuyết điều khiển tự động
lượt xem 17
download
Nội dung bài viết trình bày các bài tập liên quan đến lý thuyết điều khiển tự động như: Tạo lập, ghép nối và chuyển đổi các mô hình; tổng hợp bộ điều khiển Modal. Mời các bạn tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo Thực hành lý thuyết điều khiển tự động
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Bài 1 Tạo lập, ghép nối và chuyển đổi các mô hình 1.1.Tạo lập mô hình hàm truyền đạt: >> num=[1 2 2 1 1]; >> den=[3 3 5 8 7 8 5]; >> sys=tf(num,den) Transfer function: s^4 + 2 s^3 + 2 s^2 + s + 1 3 s^6 + 3 s^5 + 5 s^4 + 8 s^3 + 7 s^2 + 8 s + 5 Tạo lập mô hình trạng thái: >> a=[1 1 1 1;1 2 3 2;3 5 3 7;5 5 2 5]; >> b=[1 2;3 0;5 1;5 1]; >> c=[5 7 8 9;3 5 2 6;1 3 3 2]; >> d=[3 2;1 1;4 7;]; >> sys1=ss(a,b,c,d) a = x1 x2 x3 x4 x1 1 1 1 1 x2 1 2 3 2 x3 3 5 3 7 x4 5 5 2 5 b = u1 u2 x1 1 2 x2 3 0 x3 5 1 x4 5 1 c = x1 x2 x3 x4 y1 5 7 8 9 y2 3 5 2 6 y3 1 3 3 2 d = u1 u2 y1 3 2 y2 1 1 y3 4 7 Continuoustime model. Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 1
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động 1.2.Ghép nối tiếp các mô hình hàm truyền đạt >> num1=[1 1 3 1 1]; >> den1=[2 2 3 5 8 5]; >> sys1=tf(num1,den1) Transfer function: s^4 + s^3 + 3 s^2 + s + 1 2 s^5 + 2 s^4 + 3 s^3 + 5 s^2 + 8 s + 5 >> num2=[3 3 4 7 4 1 1]; >> den2=[6 8 6 6 2 1 2 5 5]; >> sys2=tf(num2,den2) Transfer function: 3 s^6 + 3 s^5 + 4 s^4 + 7 s^3 + 4 s^2 + s + 1 6 s^8 + 8 s^7 + 6 s^6 + 6 s^5 + 2 s^4 + s^3 + 2 s^2 + 5 s + 5 Thực hiện ghép nối tiếp: >> sysnt=series(sys1,sys2) Transfer function: 3s^10+6s^9+16s^8+23s^7+29s^6+33s^5+25s^4+15s^3+8s^2+2s+1 12s^13+28s^12+46s^11+78s^10+122s^9+148s^8+130s^7+105s^6+77s^5+53s^4+61s^3+75s^2+65s+25 Thực hiện ghép song song: >> sysss=parallel(sys1,sys2) Transfer function: 6s^12+20s^11+44s^10+65s^9+86s^8+108s^7+111s^6+116s^5+120s^4+98s^3+55s^2+23s+10 12s^13+28s^12+46s^11+78s^10+122s^9+148s^8+130s^7+105s^6+77s^5+53s^4+61s^3+75s^2+65s+25 Thực hiện ghép phản hồi: >> sysph=feedback(sys1,sys2) Transfer function: 6s^12+14s^11+32s^10+42s^9+40s^8+35s^7+21s^6+18s^5+19s^4+23s^3+22s^2+10s+5 12s^13+28s^12+46s^11+81s^10+128s^9+164s^8+153 s^7+134s^6+110s^5+78s^4+76s^3+83s^2+67s+26 1.3.Chuyển đổi các mô hình: Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 2
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Chuyển đổi mô hình hàm truyền đạt sang mô hình hàm trạng thái. Cho hàm truyền đạt: Ta gõ trên Matlab >> num=[5 3 7 1]; >> den=[6 1 3 9 10]; >>[A,B,C,D]= tf2ss(num,den) Và ta được kết quả là : A = 0.1667 0.5000 1.5000 1.6667 1.0000 0 0 0 0 1.0000 0 0 0 0 1.0000 0 B = 1 0 0 0 C = 0.8333 0.5000 1.1667 0.1667 D = 0 Chuyển đổi mô hình hàm trạng thái sang mô hình hàm truyền đạt: Ta gõ trên Matlab >> A=[1 1 1 1;1 2 3 2;3 5 3 7;5 5 2 5] A = 1 1 1 1 1 2 3 2 3 5 3 7 5 5 2 5 >> B=[1 2;3 0;5 1;5 1] B = 1 2 3 0 5 1 5 1 >> C=[5 7 8 9;3 5 2 6;1 3 3 2] C = 5 7 8 9 3 5 2 6 1 3 3 2 Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 3
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động >> D=[3 2;1 1;4 7] D = 3 2 1 1 4 7 Và ta được kết quả là : >> [num,den]=ss2tf(A,B,C,D,1) num = 3.0000 78.0000 91.0000 156.0000 24.0000 1.0000 47.0000 23.0000 111.0000 30.0000 4.0000 9.0000 11.0000 29.0000 12.0000 den = 1.0000 11.0000 7.0000 30.0000 6.0000 >> [num,den]=ss2tf(A,B,C,D,2) num = 2.0000 5.0000 39.0000 81.0000 72.0000 1.0000 3.0000 20.0000 27.0000 51.0000 7.0000 70.0000 19.0000 106.0000 123.0000 den = 1.0000 11.0000 7.0000 30.0000 6.0000 Bài 3 Khảo sát tính ổn định của hệ truyền động điện 3.1.Xác định các nghiệm của phương trình dặc tính: Bài làm Phương trình đặc tính có dạng: x5+x4+3x3+7x2+4x+2=0 Trên Matlab ta gõ: >> den=[1 1 3 7 4 2]; >>roots(den) Và kết quả là: ans = 0.5014 + 1.8907i 0.5014 1.8907i 1.4320 0.2854 + 0.5325i 0.2854 0.5325i 3.2.Khảo sát tính ổn định theo tiêu chuẩn Mykhailox: PB: Điều kiện cần và đủ để hệ liên tục tuyến tính ổn định là biểu đồ véctơ của đa thức đặc tính tần số quay một góc là n /2 ( tức là n lần góc phần tư ) Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 4
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động quanh điểm gốc tọa độ ngược chiều kim đồng hồ khi tần số góc ω biến thiên từ 0 đến +∞ ( n là bậc của hệ ). * Bài làm Cho đa thức đặc tính có dạng: 2x8+2x47+x6+5x5+ 7x4+3x3+3x2+x+1 Trên Matlab ta gõ: >> den=[2 2 1 5 7 3 3 1 1]; >> nyquist(den,[1]) Và kết quả là: Hình 3.1: Biểu đồ véc tơ của đa thức đặc tinh Hệ này không ổn định 3.3.Theo tiêu chuẩn Nyquist: Khảo sát sự ổn định của hệ vòng kín dựa theo đặc tính biên pha của hệ hở. PB: Điều kiện cần vả đủ để hệ vòng kín ổn định là đặc tính tần số biên pha của hệ hở Gh(jω) không bao điểm (1, j0) trong trường hợp hệ hở ổn định, hoặc bao điểm (1, j0) là m/2 lần trong trường hợp hệ không ổn định khi ω biến thiên từ 0 ÷ +∞, trong đó m là số nghiệm của phương trình đặc tính nằm bên phải trục ảo. * Bài làm Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 5
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Cho là hàm truyền của hệ hở. Trên Matlab ta gõ: >> num=[1 3 4 1]; >> den=[1 2 8 4 3]; >> nyquist(num,den) Và kết quả là: Hình 3.2: Đặc tính tần số biên pha của hệ hở Xét sự ổn định của hệ hở: >> roots(den) ans = 0.7555 + 2.5001i 0.7555 2.5001i 0.2445 + 0.6165i 0.2445 0.6165i Do các nghiệm của phương trình đặc tính của hệ hở đều nằm bên trái trục ảo nên hệ hở là ổn định. →Vậy theo hình vẽ ta thấy đặc tính tần số biên pha của hệ hở không bao điểm (1,j0), nên theo tiêu chuẩn nyquist thì hệ kín là ổn định. Bài 5 Tổng hợp bộ điều khiển PID cho đối tượng quán tính Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 6
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động 5.1.Khái quát về bộ điều khiển PID. Xét hệ điều khiển vòng kín: W(t): tín hiệu đặt U(t): tín hiệu điều khiển E(t): Tín hiệu so sánh S(t): Tín hiệu so sánh Nhiêm vụ của bài toán điều khiển : tổng hợp bộ điều khiển sao cho đối tượng bám được vào tín hiệu cho hệ sau một khoảng thời gian nhất định nào đó với độ chính xác nào đó. Một trong các bộ điều khiển rất rộng rãi hiện nay là bộ điều khiển PID. Cấu trúc của bộ điều khiển PID gồm ba thành phần: +Thành phần tỷ lệ (Proportional). +Thành phần tích phân (Integral). +Thành phần vi phân (Derivative). Sơ đồ khối: Ba khâu này được nối song song với nhau +kp là hệ số tỷ lệ. +kI là hệ số tích phân. +kP là hệ số vi phân. de(t ) u (t ) = k p .e(t ) + k I e(t )dt + k D dt Theo mô hình hàm truyền đạt R(s): U (s) R( s) = = k P + k D .s + k I .s E (s) Cách biểu diễn khác: Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 7
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Khâu tỷ lệ: Là khâu chủ yếu thực hiện chính của bộ điều khiển PID. Khi suất hiện sai lệch giữa đầu ra và đầu vào của hệ thì sai lệch được nhân lên qua khâu tỷ lệ tác động vào đối tượng làm giảm sai lệch đó. Khâu tích phân: Làm tăng thêm độ chính sác cho hệ. Chừng nào sai lệch tĩnh của hệ chưa bằng không thì thông qua khâu tích phân nó tạo ra một tín hiệu luôn luôn thay đổi tác động lên đối tượng làm giảm sai lệch đó. Khâu vi phân: Làm tăng tính tác động nhanh cho hệ (giảm thời gian qua độ). Mỗi khi có sự thay đổi nào đó của tín hiệu bên ngoài tác động vào hệ thì qua khâu vi phân sự thay đổi này được nhân lên tác động làm đối tượng phản ứng nhanh hơn với các tác động bên ngoài. Việc tổng hợp bộ điều khiển PID chính là xác định hệ số kP, kI, kD, để làm cho đối tượng thỏa mãn yêu cầu đề ra. Có nhiều phương pháp tổng hợp bộ điều khiển PID, trong đó ta hay sử dụng là phương pháp tối ưu độ lớn: 5.2.Tổng hợp bộ điều khiển PID bằng phương pháp tối ưu độ lớn. Lập trình trên MATLAB kiểm nghiệm lại kết quả. 5.2.1.Tổng hợp BĐK PID bằng phương pháp tối ưu độ lớn. Cho khâu quán tính bậc hai có dạng như sau: 5 S (s) = (7 s + 1).(0,1s + 1)5 Hệ này tương đương với hệ sau : 5 S (s) = (7 s + 1).(0,5s + 1) Ta sử dụng phương pháp tối ưu độ lớn để tổng hợp bộ điều khiển PID cho hệ trên. Bộ điều khiển PID có dạng như sau : � 1 � 7 R( s) = k p � 1+ � trong đó k P = = 1, 2và TI = T1 = 7 � TI s � 2.5.0,5 5.2.2 Lập trình trên MATLAB kiểm nghiệm lại kết quả. Ta tìm phương trình dặc tính bằng cách : >> p=[0.1 1]; >> a=[7 1]; Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 8
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động >> den=conv(conv(conv(conv(conv(p,a),p),p),p),p) den = 0.0001 0.0035 0.0705 0.7100 3.6000 7.5000 1.0000 Xét khâu quán tính khi chưa có bộ điều khiển : Hinh5.1 : Hệ chưa có bộ điều khiển Trong đó den(s)= [0.0001 0.0035 0.0705 0.71 3.6 7.5 1] Hình 5.2 : Độ thị của đầu ra Xét khâu quán tính bậc hai khi có bộ điều khiển PID : Ta sử dụng công cụ simulink trong Matlab: Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 9
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Hinh5.3 : Hệ chưa có bộ điều khiển Trong đó den(s)= [0.0001 0.0035 0.0705 0.71 3.6 7.5 1] Ta được kết quả ở đầu ra như sau Hình 5.4:Độ thị của đầu ra Vậy ta rút ra kết luận như sau: Hệ thống sẽ ổn định hơn khi bộ điều khiển PID dược đưa vào. Bài 7 Tổng hợp bộ điều khiển Modal Ta tiến hàn tổng hợp bộ điều khiển Modal cho hệ có phương trình trạng thái như sau: Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 10
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động � � x1 � � �1 2 3 1 � x1 � � 4 � � � �� � � � x2 �2 5 2 3 � x2 �2,6 � � � =� � . +�� .u � ��7 5 3 2 � � x3 �� 1,5 � x3 � � � � � ��� � ��3 5 4 1 � x4 � � 3,4 � � � � x4 � � Trên Matlab ta gõ như sau : >> A=[1 2 3 1;2 5 2 3;7 5 3 2;3 5 4 1] A = 1 2 3 1 2 5 2 3 7 5 3 2 3 5 4 1 >> B=[4;2.6;1.5;3.4] B = 4.0000 2.6000 1.5000 3.4000 >> eig(A) ans = 12.0519 1.9874 2.5868 1.4525 Theo kết quả trên ta thấy đối tượng điều khiển không ổn định vì có có hai điểm cực nằm bên phải trục ảo. Ta có sơ đồ trước khi có bộ điều khiển Modal như sau: Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 11
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Hình 7.1:Sơ đồ hệ thống khi chưa có BĐK Và tín hiệu trên khối hiển thị « Scope » ra có dạng : Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 12
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Hình 7.2: Tín hiệu ra khi chưa có bộ điều khiển. Ta tiến hành tổng hợp bộ điều khiển Modal để đưa các điểm cực của hệ về các vị trí mới có giá trị sau: 5; 7; 13; 24 Trên Matlab ta gõ : >> p=[5 7 13 24] ; >> K=place(A,B,p) Ta được kết quả: K = [98.9539 167.4183 75.9942 39.2704] Sơ đồ của hệ sau khi có bộ điều khiển Modal như sau : Hình 7.3 : Sơ đồ hệ thống có BĐK Modal Và tín hiệu khi có bộ điều khiển Modal có dạng như sau : Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 13
- Báo cáo thí nghiệm Lý thuyết điều khiển tự động Hình 7.4 : Tín hiệu ra khi có BDK Modal Vậy ta kết luận là sau khi có thêm bộ điều khiển Modal thì các điểm cực của hệ sẽ được đưa về các vị trí mong muốn và như vậy nghĩa là ta đã làm cho hệ ổn định hơn. Sinh viên: Nguyễn Tọng Chí , Lớp : ĐTĐ49ĐH2 14
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo cáo thực tập về Cơ khí
64 p | 1883 | 725
-
BÁO CÁO THỰC TẬP TRẮC ĐỊA (DDQ-02) - TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘI
17 p | 1708 | 237
-
Báo cáo thực tập tổng hợp ngân hàng HD Bank - PGD Hoàng Văn Thái – Chi nhánh Hà Nội
25 p | 1053 | 200
-
Báo cáo Thực hành thí nghiệm động cơ
48 p | 525 | 111
-
Báo cáo Thực hành phụ gia
115 p | 477 | 87
-
Báo cáo Thực hành Mạng máy tính: Bài Lab 2
43 p | 570 | 74
-
Báo cáo thực tập: Thực tập sản xuất nông nghiệp
61 p | 710 | 73
-
Báo cáo thực tập nhận thức: Công ty CP Tôn Đông Á
52 p | 467 | 60
-
ĐỀ ÁN VỀ LÝ THUYẾT TÀI CHÍNH TIỀN TỆ
49 p | 280 | 52
-
Báo cáo thực tập: " Tìm hiểu bài toán nhận dạng kí tự viết tay và phát triển ứng dụng
63 p | 233 | 50
-
Báo cáo thực tập nhận nhận thức: Công Ty Cổ Phần Vinamit
36 p | 223 | 49
-
BÁO CÁO THỰC TẬP NHẬN THỨC Chi nhánh ngân hàng Nông nghiệp & Phát triễn nông thôn thị xã Lagi
35 p | 150 | 42
-
Báo cáo thực tập: Thực tập định hướng nghề nghiệp 2
22 p | 79 | 21
-
Báo cáo thực tế: Đề tài: “Vai trò của Công đoàn trong việc cải thiện điều kiện lao động cho công nhân tại Công ty CP may Chiến Thắng- năm 2006”
9 p | 223 | 19
-
Báo cáo thực tập nhận thức: Công ty TNHH Vận Tải TP.Hồ Chí Minh
43 p | 160 | 19
-
Báo cáo thực hành: Kỹ thuật phản ứng
40 p | 133 | 18
-
Báo cáo: Thực hành kỹ thuật xung số
15 p | 77 | 15
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn