Các bài toán xác định góc trong HHKG (Bài tập và hướng dẫn giải)
lượt xem 89
download
Tham khảo tài liệu 'các bài toán xác định góc trong hhkg (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán xác định góc trong HHKG (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 03 tháng 01 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BÀI TẬP VỀ NHÀ (08-02-2010) Các bài toán xác định góc trong HHKG. Bài 1: Cho lăng trụ đứng ABC.A’B’C’ đáy là tam giác cân đỉnh A và ∠BAC = α . Gọi M là trung điểm của AA’ và giả sử mp(C’MB) tạo với đáy (ABC) một góc β . a) Chứng minh ∠C ' BC = β . α b) Chứng minh tan = cosβ là điều kiện cần và đủ để BM ⊥ MC ' .α 2 Bài 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh là a. Gọi E, F và M lần lượt là trung điểm của AD, AB và CC’. Gọi α là góc giữa hai mặt phẳng (ABCD) và (EFM). Tính cosα . Bài 3: Trong mp(P) cho hình vuông ABCD cạnh a. Dựng đoạn SA vuông góc với (P) tại A. Gọi M, N lần lượt là các điểm trên BC, CD. Đặt BM = u , DN = v. Chứng minh rằng: a ( u + v ) + 3uv = 3a 2 Là điều kiện cần và đủ để hai mặt phẳng (SAM) và (SAN) tạo với nhau một góc 30o . Bài 4: Cho tam diện vuông góc Oxyz. Lần lượt lấy trên Ox, Oy, Oz ba đoạn OA=a, OB=b, OC=c. Gọi α, β, γ là số đo các nhị diện cạnh BC, CA, AB. a) CMR: cos 2α + cos 2 β + cos 2γ = 1 b) CMR: ( S ∆ABC ) = ( S ∆OBC ) + ( S ∆OCA) + ( S ∆OAB ) 2 2 2 2 Bài 5: Trong mặt phẳng (P) cho hình vuông ABCD cạnh a. Lấy M,N thuộc CB và CD. Đặt CM=x, CN=y. Lấy S ∈ At ⊥ ( P) . Tìm hệ thức giữa x, y để: a) ∠ ( ( SAM ), ( SAN ) ) = 450 b) ( SAM ) ⊥ ( SMN ) ………………….Hết………………… BT Viên môn Toán hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 29 tháng 01 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 2 Page 2 of 10
- TRUNG TÂM BỒI DƯỠNG VĂN HÓA HOCMAI.VN ………… , ngày ….tháng… năm ….. A5+A6, 52 Nguyễn Chí Thanh Tel: 04.3775-9290 HƯỚNG DẪN GIẢI ĐỀ LUYỆN BG SỐ 2 Quan hệ vuông góc trong không gian. (Các em tự vẽ hình vào các bài tập) • BTVN – 04/02/2010: Bài 1: Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a . 1. Chứng minh mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD). 2. Chứng minh ∆SBD vuông tại S. HDG: 1. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, vì SA = SB = SC = a nên SO ⊥ mp ( ABCD ) . Mà AC ⊥ BD vì ABCD là hình thoi, nên O ∈ BD Có: SO ∈ ( SBD ) , SO ⊥ ( ABCD ) ⇒ ( SBD ) ⊥ ( ABCD ) Bài 2: Tứ diện SABC có SA ⊥ mp ( ABC ) . Gọi H, K lần lượt là trực tâm của các tam giác ABC và SBC. 1. Chứng minh SC vuông góc với mp(BHK) và ( SAC ) ⊥ ( BHK ) 2. Chứng minh HK ⊥ ( SBC ) và ( SBC ) ⊥ ( BHK ) . HDG: 1. Vì H là trực tâm tam giác ∆ABC ⇒ BH ⊥ AC , theo giả thiết SA ⊥ mp ( ABC ) ⇒ BH ⊥ SA . Nên BH ⊥ mp ( SAC ) ⇒ SC ⊥ BH Do K là trực tâm ∆SBC ⇒ BK ⊥ SC Từ đó suy ra SC ⊥ mp ( BHK ) ⇒ mp ( BHK ) ⊥ mp ( SAC ) (đpcm) 2. Tương tự như trên ta cũng chứng minh được: SB ⊥ mp ( CHK ) ⇒ SB ⊥ HK Mà SC ⊥ mp ( BHK ) ⇒ SC ⊥ HK . Do đó: HK ⊥ mp ( SBC ) ⇒ mp ( SBC ) ⊥ mp ( BHK ) Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và có cạnh SA vuông góc với (ABCD). Giả sử (P) là mặt phẳng qua A và vuông góc với SC. 1. Chứng minh ( SBD ) ⊥ ( SAC ) . 2. Chứng minh BD || mp ( P ) Page 3 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 29 tháng 01 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG: 1. Vì ABCD là hình vuông tâm O nên AC và BD vuông góc với nhau tại O, vì SA vuông góc với (ABCD) nên SA ⊥ BD ⇒ BD ⊥ ( SAC ) ⇒ ( SBD ) ⊥ ( SAC ) 2. Từ giả thiết suy ra: ( P ) ⊥ ( SAC ) , mà BD ⊥ ( SAC ) ⇒ BD || ( P ) Bài 4: Trong mặt phẳng (P) cho hình chữ nhật ABCD. Qua A dựng đường thẳng Ax vuông góc với (P). lấy S là một điểm tùy ý trên Ax ( S ≠ A ). Qua A dựng mặt phẳng (Q) vuông góc với SC. Giả sử (Q) cắt SB, SC, SD lần lượt tại B’, C’, D’. Chứng minh: AB ' ⊥ SB, AD ' ⊥ SD và SB.SB ' = SC.SC ' = SD.SD ' HDG: Từ giả thiết suy ra: SA ⊥ BC , AB ⊥ BC ⇒ BC ⊥ ( SAB ) ⇒ BC ⊥ AB ' Mà SC ⊥ ( Q ) ⇒ SC ⊥ AB ' . Do đó AB ' ⊥ ( SBC ) ⇒ AB ' ⊥ SB Ngoài ra ta cũng có BC ⊥ SB, SC ⊥ B ' C ' ⇒ ∆SBC : ∆SC ' B ' nên: SB SC = ⇒ SB.SB ' = SC.SC ' SC ' SB ' Chứng minh tương tự ta được AD ' ⊥ SD và SD.SD ' = SC.SC ' Vậy ta có đpcm. Bài 5: Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB=a, BC= a 3 , mặt bên (SBC) vuông tại B và (SCD) vuông tại D có SD= a 5 . a. Chứng minh: SA ⊥ ( ABCD) . Tính SA=? b. Đường thẳng qua A vuông góc với AC, cắt các đường thẳng CB,CD lần lượt tại I,J. Gọi H là hình chiếu vuông góc của A trên SC. Hãy xác định các giao điểm K,L của SB,SD với mặt phẳng (HIJ). CMR: AK ⊥ ( SBC ) ; AL ⊥ ( SCD) . c. Tính diện tích tứ giác AKHL=? Giải: BC ⊥ BA ⇒ BC ⊥ ( SAB ) ⇒ BC ⊥ SA BC ⊥ BS a) Ta có: ⇒ SA ⊥ ( ABCD) . Ta có: SA = a 2 DC ⊥ DA ⇒ DC ⊥ ( SAD) ⇒ DC ⊥ SA DC ⊥ DS b) Trong (SBC) gọi: SB ∩ HI = {K } ⇒ K = SB ∩ ( HIJ ) Hocmai.vn – Ngôi trường chung của học trò Việt 4 Page 4 of 10
- TRUNG TÂM BỒI DƯỠNG VĂN HÓA HOCMAI.VN ………… , ngày ….tháng… năm ….. A5+A6, 52 Nguyễn Chí Thanh Tel: 04.3775-9290 Trong (SAD) gọi: SD ∩ HJ = {L} ⇒ L = SD ∩ ( HIJ ) . Ta có: BC ⊥ AK (1) mà: SA ⊥ IJ ⇒ IJ ⊥ ( SAC ) ⇒ IJ ⊥ SC AC ⊥ IJ ⇒ SC ⊥ ( HIJ) ⇒ SC ⊥ AK (2) SC ⊥ AH Từ (1) và (2) ta có: AK ⊥ ( SBC ) . Tương tự cho AL ⊥ ( SCD) c) Tứ giác AKHL có: AL ⊥ KH ; AL ⊥ LH nên: SAKHL = 1 ( AK .KH + AL.LH ) . 2 2 Vậy : SAKHL = 8a 15 • BTVN – 06/02/2010: Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, có SA = h và vuông góc với mp(ABCD). Dựng và tính độ dài đoạn vuông góc chung của: 1. SB và CD 2. SC và BD HDG: 1. Vì ABCD là hình vuông nên BC ⊥ CD Page 5 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 29 tháng 01 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BC ⊥ AB Lại có: BC ⊥ SA do SA ⊥ ABCD ⇒ BC ⊥ ( SAB ) ⇒ BC ⊥ SB ( ( )) Vậy BC là đoạn vuông góc chung của SB và CD, và BC = a 2. Gọi O = AC ∩ BD ⇒ AC và BD vuông góc nhau tại O, mà SA ⊥ BD ⇒ BD ⊥ mp ( SAC ) . Trong tam giác SAC, kẻ OI vuông góc với SC khi đó BD và OI vuông góc nhau do đó OI là đường vuông góc chung của SC và BD SA SC SA.OC ah ∆SAC : ∆OIC ⇒ = ⇒ OI = = Ta có: OI OC SC 2 ( h 2 + 2a 2 ) Bài 2: Cho chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách giữa hai đường thẳng SA và BC. HDG: Trong tam giác ABC đều, kéo dài AG cắt BC tại M ⇒ AG ⊥ BC Chóp S.ABC đều, mà G là tâm ∆ABC ABC nên SG ⊥ ( ABC ) ⇒ SG ⊥ BC , từ đó suy ra BC ⊥ ( SAG ) . Trong ∆SAM kẻ MN ⊥ SA ( N ∈ SA ) ⇒ MN ⊥ BC . Do vậy MN là đoạn vuông góc chung của BC và SA. Ta có: 2S ∆SAM SG.MA 3 3a MN = = = ... = SA SA 4 Bài 3: Cho hình chóp tam giác S.ABC có SA vuông góc với mp(ABC) và SA = a 2. . Đáy ABC là tam giác vuông tại B với BA=a. Gọi M là trung điểm của AB. Tìm độ dài đoạn vuông góc chung của 2 đường thẳng SM và BC. HDG: SA ⊥ BC Ta có ⇒ BC ⊥ ( SAB) tại B. Dựng BH ⊥ SM ( H ∈ SM ) . AB ⊥ BC Ta thấy: BH ⊥ BC . Vậy BH chính là đoạn vuông góc chung của SM và BC. Ta tính BH như sau: a BH BM BH 1 a 2 Vì = ⇔ = 2 = ⇒ BH = SA SM a 2 3a 3 3 2 Hocmai.vn – Ngôi trường chung của học trò Việt 6 Page 6 of 10
- TRUNG TÂM BỒI DƯỠNG VĂN HÓA HOCMAI.VN ………… , ngày ….tháng… năm ….. A5+A6, 52 Nguyễn Chí Thanh Tel: 04.3775-9290 a 3 Bài 4: Trong mặt phẳng (P) cho hình thoi ABCD có tâm là O, cạnh a và OB = . Trên 3 đường thẳng vuông góc với mp(ABCD) tại O, lấy điểm S sao cho SB = a. Tính khoảng cách giữa hai đường thẳng SA và BD. HDG: Dễ chứng minh được BD ⊥ ( SAC ) (vì BD ⊥ AC , BD ⊥ SO ) Trong mp(SAC) kẻ OI ⊥ SA ( I ∈ SA) ⇒ OI là đoạn vuông góc chung của SA và BD. a 6 2a 3 Ta có: SO = OA = ⇒ SA = SO 2 + OA2 = 3 3 2 S ∆SOA SO.OA 3a ⇒ OI = = = ... = SA SA 3 Bài 5: Cho tứ diện ABCD với AB=CD=a, AC=BD=b, BC=AD=c. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy tính độ dài đoạn vuông góc chung của AB và CD. HDG: Ta thấy ngay ∆ABC = ∆ABD nên 2 trung tuyến CI và BD bằng nhau hay ∆ICD cân tại I. Nên ta có IJ ⊥ CD . CM tương tự ta có: IJ ⊥ AB vậy IJ chính là đoạn vuông góc chung của AB và CD. Tính IJ: Áp dụng công thức trung tuyến và ta tính IJ được kết quả là: b2 + c 2 − a 2 IJ = 2 • BTVN – 08/02/2010: Bài 15: Cho lăng trụ đứng ABC.A’B’C’ đáy là tam giác cân đỉnh A và ∠BAC = α . Gọi M là trung điểm của AA’ và giả sử mp(C’MB) tạo với đáy (ABC) một góc β . 1. Chứng minh ∠C ' BC = β . α 2. Chứng minh tan = cosβ là điều kiện cần và đủ để BM ⊥ MC ' . 2 Page 7 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 29 tháng 01 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG: 1. Trong mp(ACC’A’) kéo dài C’M cắt CA tại N, thì A là trung điểm của NC suy 1 ra: BA = AC = AN ⇒ BA = CN ⇒ ∆BCN vuông tại B nên BN ⊥ BC . 2 Tương tự ta có BN ⊥ BC ' Dễ thấy: BN = mp ( MBC ') ∩ mp ( ABC ) , từ trên suy ra ∠C ' BC = β = (·ABC ) , ( MBC ') ) ( 2. Vì BM là trung tuyến của ∆BC ' N nên: BM ⊥ MC ' ⇔ ∆NBC ' cân đỉnh B α BC.cos ⇔ BC ' = BN ⇔ BC = BH = 2 ⇔ cosβ = tan α cosβ sin α sin α 2 2 2 (Với H là chân đường vuông góc hạ từ B xuống cạnh AC) Bài 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh là a. Gọi E, F và M lần lượt là trung điểm của AD, AB và CC’. Gọi α là góc giữa hai mặt phẳng (ABCD) và (EFM). Tính cosα a 2 a 6 HDG: Ta có: EF = AE 2 + AF 2 = , ME = MF = MC 2 + CB 2 + BF 2 = 2 2 Gọi I = EF ∩ AC ⇒ MI ⊥ EF . Mà MI ⊥ EF ⊥ AC , ( MEF ) ∩ ( ABCD ) = EF nên:góc giữa hai mặt phẳng (ABCD) và (EFM) là ∠MIC = α 3 AC Do đó: cosα = IC = 4 = .. = 3 11 IM MF 2 − IF2 11 Bài 3: Trong mp(P) cho hình vuông ABCD cạnh a. Dựng đoạn SA vuông góc với (P) tại A. Gọi M, N lần lượt là các điểm trên BC, CD. Đặt BM = u , DN = v. Chứng minh rằng: a ( u + v ) + 3uv = 3a 2 là điều kiện cần và đủ để hai mặt phẳng (SAM) và (SAN) tạo với nhau một góc 30o . HDG: Ta có: AM 2 = a 2 + u 2 ; AN 2 = a 2 + v 2 MN 2 = ( a − u ) + ( a − v ) = 2a 2 + u 2 + v 2 − 2a ( u + v ) 2 2 Dễ thấy góc giữa hai phẳng (SAM) và (SAN) là góc ∠MAN = α AM 2 + AN 2 − MN 2 Do đó: α = 30o ⇔ cosα = cos30o = 2 AM . AN Hocmai.vn – Ngôi trường chung của học trò Việt 8 Page 8 of 10
- TRUNG TÂM BỒI DƯỠNG VĂN HÓA HOCMAI.VN ………… , ngày ….tháng… năm ….. A5+A6, 52 Nguyễn Chí Thanh Tel: 04.3775-9290 3 a ( u + v) ⇔ = 2 a2 + u 2 . a2 + v2 ⇔ 3 ( a 2 − uv ) = a 2 ( u + v ) 2 2 ⇔ a ( u + v ) + 3uv = 3a 2 Bài 4: Cho tam diện vuông góc Oxyz. Lần lượt lấy trên Ox, Oy, Oz ba đoạn OA=a, OB=b, OC=c. Gọi α, β, γ là số đo các nhị diện cạnh BC, CA, AB. c) CMR: cos 2α + cos 2 β + cos 2γ = 1 d) CMR: ( S ∆ABC ) = ( S ∆OBC ) + ( S ∆OCA) + ( S ∆OAB ) 2 2 2 2 HDG: 2 OH OH a) Kẽ CH ⊥ AB ⇒ OH ⊥ AB ⇒ ∠OHC = γ . Ta có: cosγ = ⇔ cos 2γ = 2 CH CH a 2b 2 + b 2 c 2 + c 2 a 2 a 2b 2 CH = OC + OH = 2 2 2 ⇒ cos γ = 2 2 2 a 2 + b2 a b + b 2c 2 + c 2 a 2 Tương tự và ta tính được: cos 2α + cos 2 β + cos 2γ = 1 b) Áp dụng công thức diện tích hình chiếu ta có: S ∆OBC = S ∆ABC cos α S ∆OCA = ∆SABC cos β ⇒ ( S ∆ABC )2 = ( S ∆OBC )2 + ( S ∆OCA)2 + ( S ∆OAB)2 S ∆OAB = S ∆ABC cos γ Bài 5: Trong mặt phẳng (P) cho hình vuông ABCD cạnh a. Lấy M,N thuộc CB và CD. Đặt CM=x, CN=y. Lấy S ∈ At ⊥ ( P) . Tìm hệ thức giữa x, y để: c) ∠ ( ( SAM ), ( SAN ) ) = 450 d) ( SAM ) ⊥ ( SMN ) HDG: a) ∠ ( ( SAM ), ( SAN ) ) = ∠MAN Ta có: MN 2 = MA2 + NA2 − 2 MA.NA cos ∠MAN Ta tính được: MN 2 = x 2 + y 2 MA2 = a 2 + (a − x ) 2 ⇒ ∠MAN = 450 ⇔ x 2 y 2 + 4a 3 ( x + y ) = 4a 4 + 2axy ( x − y ) NA2 = a 2 + (a − y ) 2 Page 9 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 29 tháng 01 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 b) Giả sử ( SAM ) ⊥ ( SMN ) Kẽ NM ' ⊥ SM ⇒ NM ' ⊥ ( SMA) ⇒ NM ' ⊥ SA Nhưng SA ⊥ MN nên NM’ trùng với NM hay M’trùng với M ⇒ a 2 + (a − y ) 2 = a 2 + (a − x) 2 + x 2 + y 2 ⇔ x 2 = a ( x − y ) ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 10 Page 10 of 10
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Phương pháp giải các bài tập hình không gian trong kì thi tuyển sinh đại học
22 p | 794 | 313
-
Sinh học 12 - chuyên đề " di truyền học và xác suất"
9 p | 1154 | 306
-
SKKN: Phương pháp xác định góc giữa hai mặt phẳng
9 p | 1377 | 261
-
Phương pháp giải các bài toán hình giải tích Oxy trong kì thi TSĐH
45 p | 803 | 209
-
TIA PHÂN GIÁC CỦA GÓC
7 p | 689 | 49
-
Giáo án Hình Học lớp 10: CÂU HỎI VÀ BÀI TẬP GÓC, KHOẢNG CÁCH GIỮA 2 ĐƯỜNG THẲNG(2)
4 p | 418 | 45
-
Bài toán xác định thời gian trong dao động điều hòa
4 p | 335 | 24
-
Sáng kiến kinh nghiệm THPT: Toàn cảnh bài toán đồ thị trong chương trình Vật lý 12 giúp nâng cao khả năng tư duy của học sinh
68 p | 15 | 9
-
Các dạng bài tập Vật lý 12: DẠNG 5: BÀI TOÁN ĐỘ LỆCH PHA CỦA u(t) so với i(t).
0 p | 156 | 8
-
Các bài toán xác định góc 2
3 p | 94 | 7
-
Các bài toán xác định góc
1 p | 90 | 7
-
Giáo án hay nhất 2012 Tuần 09 Lớp dạy: 7 Tiết 17 Chương II TAM GIÁC § 1 TỔNG BA GÓC CỦA MỘT TAM GIÁC
3 p | 115 | 7
-
Sáng kiến kinh nghiệm THPT: Sáng tạo các bài toán góc trong không gian trên các mô hình hình học
62 p | 21 | 6
-
Sáng kiến kinh nghiệm THPT: Góp phần phát triển tư duy sáng tạo cho học sinh thông qua khai thác bài toán về góc trong Hình học không gian
61 p | 17 | 5
-
Bài giảng Vật lí 10 - Bài 15: Bài toán về chuyển động ném ngang
12 p | 86 | 4
-
Sáng kiến kinh nghiệm THPT: Phân tích, định hướng nhằm rèn luyện kỹ năng tính góc giữa hai mặt phẳng cho học sinh trường THPT Quỳ Châu
54 p | 26 | 4
-
Giáo án Toán lớp 11 - Chương VIII, Bài 1: Hai đường thẳng vuông góc (Sách Chân trời sáng tạo)
13 p | 11 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn