intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Con người - Nhìn từ phương Đông và hôm nay: Phần 2

Chia sẻ: Luis Mathew | Ngày: | Loại File: PDF | Số trang:79

27
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

"Con người - Nhìn từ phương Đông và hôm nay: Phần 2" gồm có những nội dung chính sau: bản tính và ngôn ngữ: Ngôn ngữ với then máy ứng xử; bản tính và ngôn ngữ: tính lô gích nội tại của ngôn ngữ; nghĩa với ý tưởng; ngôn ngữ với đối tượng và thực tại; chân lý trong ngôn ngữ; tác động của ngôn ngữ và truyền thông; Truyện thuật: Kịch tính - Thời tính;... Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Con người - Nhìn từ phương Đông và hôm nay: Phần 2

  1. . 1^ Con ngi((Yi giffa hai chu nghla duy nghiem va duy luan \ ncJi nhieu nha irie'l ngff. Luan ^ c^a ho thifdng cOng 1^ luan \ to^n hoc luon. Cho rLg ngon ngiT W nhien (tifc ng6n ngi? thiTdng dilng cua c^c midc) CHl/dNC 2 : ra't thifiu 16 gich, ho hoii bao ch6' tdc moi ngon ngff m
  2. 128 Con ngUifi Ngon ngi} 129 tdm l(;m cho mot ngirdi B^c chiTa quen, thi cau n6i Con rila chSng trong phit ngdn sinh ra. Vay thur hdi di? (tng bdi m0l ti? cd t^ch IJl gi d6'i v(3i Chung ta lai thanh cSu chu"! ddi vdi cdc ban ngiTdi du'dc khdi dif u'ng hay nghia ciia toin phit ngdn hay khdng ? Vi T^u. Ta't ca chi vi giffa ngon tiy thifc tai con c6 c^i Y nghia n6 lim cich nao giai thich nghia hay di? u'ng ciia hai cau sau day b^ng xen v^o giffa. Mk Y nghia nky thi lidn ke't vdi cl md nhi^ng kinh du'u'ngci5a nhi?ng nguydn td'thinh ptfSn y nhu'nhau: nghicm, thong tin va nhicu nhan to' chu quan khic. Do dd, ndi vB Cau 1 : Con meo tren cdi n^m Ngu", khong the khong ndi ve Nghia. Cd dicu Duy tfng xu" phdi coi Nghia chi nhu" hieu cua ihUc tai, nhu' tu" Tnyi mm la k^ hicu cua Cau 2 : Cdi nfm tren con meo ? ? ? ' ? cdn mi/a. Stevenson du'a c^i Nghia ay vao sau hdn trong con ngu'di mOl ti : theo 6ng, Nghia chinh M sir sSn s^ng hay dif tog (disposition) dd t?ng dip khi tir ngiT diTdc nghc. Co nhifin, sinh ra iJng xu" hay sfn sing i^ng xvt, khdng clii cd tif ngi? du'dc nghe, mk k6m theo cdn du tht? hoin cinh. niJa. Chinh vi th6', nhu" ifng xu" phdi giai thich, vdi cilng mot tu", cd thd cd nhieu tfng xuT khdc nhau. Dtl difa thdm hoin cSnh vlo giai thich nhu" the", Cng xu'thuyd't vin nhin tu'dng quan Ngdn ngff-lJng xu* hay Ngon ngtr-Du" iJng nhU" mpt tifdng quan NhSn-qu^, vdi hoin cinh la c^c di'^u kien, th6' thdi. GiCfa ngon ngi? (vi ^ nghia cua nd) mot bdn vi ben kia li hanh dong hay itng xii" cua ngifdi nghe, khdng he cd tif do xen vio. The thi dau cdn ch6 cho tda ^n, dtl tda in liTdng tam hay tda in chinh quy'^n, dd phS phiin mot hinh dong li trii hay phii, vi$c lim chet ngUdi cua anh la ngo sdt hay cd dif mu\ dSy? Ngay ngon ngu", d chd nd li be mit va bieu hien cua tif tifdng, da ndi len cdi ti/ do, phdng kho^ng ciia tu" tu'dng nd md ve sU" bao la, khong gidi han so lu'dng bdi khong gian vi thdi gian, khong bi CQt chat vdi hicn tai cua kich thich vi phan u'ng. Chomsky da nghl dting khi coi biC't ndi thuoc riSng bin tinh con ngu'di. Vang, giai thich ngon ngi? duy b^ng kich dong vi i?ng xu" hay di? u'ng li xdp nd ngang hing vdi tid'ng hti hay hdt, sua ciia thti vi chim mudng. Ly giai dil v'6 Nghia, \?ng xu' ph^i cung cho Nghia li do t^c dong cua ngdn tir. M6i tu" sinh ra mot nghia hay mot di? i^ng, Vi nghia hay di? u'ng c^a mot phdt ngdn li do tic d^ng cua mpi ti?
  3. BAN TiNH NCON NCCT : TiNH L6 CiCH NOI TAI CUA NGON NCCT Tinh 16 gich N6i dc'n tU" wdng, ngiTdi ta it n6i den cSu trtic cua n6; nhiTng ban ve ngon ngu", khong the bo qua mo thiJc cau true dUcJc. Vang, mot tur dcJn le Ihi khong du nghia. Nghia day du chi c6 d cSu, va cau nhfdu khi cung bi6n nghia Irong ngff c^nh cua mot doan, mpt ngu" trinh (discours). Trie't ngu" khong c6 dol tiTdng 1^ ngu" ph^p, ma chi quan tSm dS'n nghia cua ng6n ngi? th6i. Thd'nhu'ng nghia cua mdt cSu lai tily thuoc {nX6c tifin va ra't nludu v^o cti ph^p cua cSu ay. Ma cii pMp thi c6 16 gich cua n6, nhu" dpng tir quy vc chii lu", va menh dc phu kh6ng the' khong tily thuQC m$nh de chinh... D6i v
  4. 132 Con ngudi Ngdn ngCt 133 nhir ngCf nSng phSn tich di xudng vk di v^o ihi/c hknh (ngCf thi). ihd trdnh bkng cdch khdc trong cic tid'ng An-Au, khi tinh Iff lu6n Nfi'u g o i : phai h(?p giong, so' va bic'n cich. danh iff ma n6 vi thuoc. danhtirm D Dd h(?p If h6a v^ \oin \f h6a ngff phdp, ngffdi ta c5n bidu thi mot cau true cau bkng phan s6' nffa. Nc'u cau chi gbm mot Danh iff d6ngtfifla ' D v^ mpt Dong iff, thi c6ng thffe cija n6 se la ; HO tinhtirM T C =D .D , do d6 : ngu" doan, cSu 1^ d, C D = D/C v.v. thi v
  5. . : ConngUcfi 135 Ngdn ngil tinh ndi trSn, bilu trinh tri tfnh n^y lu6n di kbm v6i mot bidu the cu thd. VSng, chi can mot c^i gi c6 mot c^ch kh^ch quan, doc thlJc (expression) ng6n ngu". Theo ong, bieu trinh Iri tinh lifdng) lap d6'i V(5i k6 dang n6i vc n6, M du dd n6 th^nh dd'i lUcfng dd Amc c6 tinh chu quan vi tdy thuoc v^o tam trang ho^n canh m6i ca n6i ve. D6'i tu'dng theo Frege la c^i du'dc xic lap bdi mot tiT ridng. nhSn, trong khi f nghia (cfia bidu thtfc), trdi lai, lu6n c6 tinh tir ridng 1^ nSn tdng chinh m^ Frege du'a vko dd thia't lap cdc kh^ch quan : vi theo 6ng, mot bieu thiJc luon mang cilng mot f mlu cSu. Tilf riSng, 6.6 la t6n goi hay mot bidu thtfc tu'dng difdng, nghla cho mot cong d'6ng ngon ngiJ. ong du'a ra vi du : Bieu nhu'" Th'ay ciia Platon " chd han. thi'rc "Thu d6 nirdc Phip" luon c6 mot f nghia cho cong dong ng6n ngu- Phip; trii lai, bieu trinh (5^ tifdng) v'a Thu d6 n\i6c ?hip lai doi Tuy lif ridng da c6 xic lap, nhu'ng x^c lap n^y mdi chi la ba't thay lily ngu'cfi, bdi le m6i ngiTdi quan niem (lif Irinh b^y \6i minh) tdc. MOt xdc lap d'ay dij phSi do mdt bidu thiJc to^n trie ck v6 cu vc Paris rat khdc nhau. phdp lln 5^ nghia, nhu' cSu : Thay ciia Platon la ngudi dao hgnh. Mpt bieu thtfc loan tiic c6 xic lap (dting) to^n ttic thi gom bdi T^ch tifdng ra khoi Nghia, Frege con phan Nghia ra kh6i thanh phan Ik nhGng bidu thitc c6 x^c lap dil bat tilc, nhifThdy ciia yeii to'm^ 6ng goi la X^c lap (denotation). Platon va ngudi dao hgnh chiing difdc n6'i vdi nhau bdi hd ngifLA. Theo Frege, nghia cua mot phdt ng6n 1^ tu" tu'dng cMa. trong Muo'n to^n hoc h6a ng6n ngi?, Frege bieu didn cSu trtic cau ph^t ngon ay, c6n hu'dng ma phdt ngon nh^m doi lU'cJng lai \k sir b^ng cong thi?c todn hoc nhu' sau : x^c lap cua n6. Thong ihifdng, ngu'di ta quen n6i "Socrate" Vdi F \.k cMc nSng (fonction), vdi x 1^ ddl so (argument), vdi "TliSy cua Platon" thi dong nghia vi chi cilng mot ngucdi. N6i nhu" y \k gii tri (valeur), ta c6 ; vay cung la bdo :"Th''ay cua Platon 1^ Socrate" coi cau ay 1^ diing do chinh ^ nghia cua n6. Coi cau ay la dung chi do f nghia F ( x,y ) chuydn vao bieu thiJc, thanh : cua n6, thi cung coi cSu ay la mOt cau phan tich (analytique) lu6n. F (Thay cua +x) Nhifng Ihi/c ra cau ay chi la cSu tong hcfp, vi khong ph^i do 15' cua ngon lu" nhifng do kinh nghiem ta mdi bie'l du'dc thay cua Platon N6u X la Platon, Ihi gi^ tri hay x^c lap se la Socrate; n6'u x la chinh 1^ Socrate. Vang dSy 1^ sif kien kinh nghiem (fait Aristote, thi xic lap 1^ Platon. N6i cdch khdc, gi^ tri Socrate hay empiriquc), chif khdng phai sufkicn ngifhoc (fait linguistique). Platon diTdc x^c lap bdi: Thay ciia x khi x la Platon hay Aristote. M6i bieu ihtfc ngon ngu" d6u c6 nghia va c6 x^c lap luon. N6i Ticp d6 dcii bidu thiJc loan tiic : Nghia klii hu'cJng v"6 bieu Ihtfc ma n6i, n6i x^c lap khi hu'dng ve dS'i F ( X +\k ngUdi dao hanh) tu'dng ma n6i. VI the', kh6ng phdi nghia, nhu'ng xkc lap mdi khie'n Ndu X \k Socrale nhiT irdn r6i, thi xilc lap se 1^ : Socrate cho mot bieu th(?c th^nh diing (thifc) hay sai, do d6 mang d6'n cho la ngudi dao hgnh.Vk cSu nay la dung (thifc). bidu thttc gid tri chSn 1^^. PhSn tich rat 16 gich va lo^n hoc cua Frege giup rat nhicu Frege n6i D6'i tiTcJng cht? khOng n6i Thifc tai (cu the'), vi Doi v^o viec x^c dinh cau true ngif nghia, Iren cd sd d6, ngi? ph^p li/dng c6 ih6 chi lc\t cili gi t6ng qudt, chu" khong cln \h mol cd pham tril difdc ^p dung 16 glch hdn khi didn ra trdn ndn tSng cua
  6. ConngUdi hai pham iril diTgfc coi Ik g6c dS'i v
  7. i f. 138 ConngUdi ^'^•^'^ m6i phii sinh nhu'ng hoc thuyd'l (khoa hpc) nhiT H6n mang va BS'l kh6ng the lr3 thanh 16 gich to^n hoc. D e m 16 gich lodn h(?c vao chi dinh. 16' lam cho ngon ngU thdm c6ng kcnh va dai ddng mot each kh6ng can thic't. Thu" hinh dung xem, mot bieu thtfc nhif Mua he chay Thai ra khoa hpc, dti doi iiCdng cua n6 1^ ihd' gidi v a l chS'l hong ma nay phdi vi6't lai cho loan hoc la : Chi c6 mgt x Id mila h^, day, nhirng cang d i sau vao chS'l, n6 chng ihSy val chS'l c6 g i va X nay hi$n c6 dg nong gdn bdng nhi$t dg y cua liJca, ma liia thi hdn [k chinh v a l chat, k h i mk cdch nao d6, v a l chal ay da mang dot, nen mot so dong ngU
  8. cSu quen thuQC. VSng, vSn d'fe 1^ Quen, nghla 1^ LSp l a i (r6p
  9. M2 Conni-udi ^8^" ngff mol cdi gi hi$n hO\i. N6i ro htfn, mdi sU" vat d'du lam tMnh bdi hai Thay vi bao ngon tuf Ik kf hi$u cua f lu'dng, WiltgensLein lai nguycn 15^: Mo ihu-c (morfc) va chal thiJc (hulc). C6 dibu phan Idn lien kc't trirc ticp nd (thi du ngdn tit con tho ) vdi cam giic. Ncu tdi ' v i anh cd cilng mot cam giic ve ddi lu'dng (con thd), thi qua ngdn tir {con thd), tdi v i anh se hilu nhau. Thd'nhu'ng con ihd cu the' ihi cic trie't thuyc't c6 dien vSn coi ^ Wdng c6 tnTdc va doc lap doi v6i die Ihil, ncn cam giic v6 nd cung dac thil. Dac thil, nghia la khdng ng6n ngff, lai chi ddng ngon ngff nhiT cong cu dc Iruycn thdng th6i: cd gi chung tir con nay sang con khic, tir li3c nay sang luc khic, lir ngon ngff diTOc coi M k^f hidu quy u'dc v^ v6 doin (lijf ngoai) cua tif ngu'di nay sang ngu'di khic, th6' ihi Mm sao cd mot tir chung vdi Wdng. mot 5? nghia chung cho moi ddl lu'dng thd va moi kinh nghiem ve chdng day? Tir Thd va S nghia Thd cdn phai la chung cho mot loai Dc giii thicng ^ lifdng, Locke da ha gid n6 b^ng cdi nhin duy gid'ng dc phan bicl nd vdi cic loai giong khic nhu* Chuol va M6o nghiem cua ong. Theo ong, cung nhu" ngon lu" la k$ hicu cua 5' niya. Cu6i cilng thi cich nay hay cich khic, ngudi ta cQng phdi Wdng, ^ Wdng ching qua cung chi l i k^ hicu hay k^f hoa chSp nhan cd c i i CHUNG, v i nd la chung Ihirc sV ndi nd, nhd dd ta (figuration) cua thifc tai, lh6' thoi; v^ t
  10. 144 Con ngUdi Ngdnnga 145 ihiSn nhien v l xay khoa hoc dufcfc. VSng, khoa hoc n i o mk chi n6i dU'dc. B d i le d6' c6 tri thite thi p h ^ i xfip loai, p h l i t6ng qu^t h6a v l vc nhffng c^i Chung v l dira trdn nguyfin t^c chung I I nhan-qua: he thd'ng h6a. "Kh6ng hien W(?ng ako c6 mk khong c6 nguyen nhan lifdng C6 dibu bin chl't c l i Tdng hay Ph6 ay I I g i , thi do lap tru-dng xtfng"! tu" tu"dng, ngiTdi la kh6 dong v6\. Tai sao cilng Ngu'di ca, m l Qua la ph3i nhin nhan r^ng : f lu^dng cua l6i ve mot thite lai c6 kc diroc klnh ngifdng nhu" Socrate, k6 lai xau x i v l bi ngiroc dai khong the kh6ng mang bieu trinh lam 15^ (representation mentale) nhiT Th^ng gil N h l thd Dtfc B I Paris ? Tai sao tir Ngu-di I'y bidu thi cCa t6i va thuTc tai d6. m5t n l y , 5^ tiTdng I I m^t v hay quy luat v l nguyen l^c luan 15'. NhiTng quy luat 15^, h6a, c
  11. Con ngudi •.'•''Y-V* m irong i\i(ing lai cung mai mai nhiT vay, khdng the kh^c diTdc. Vk - Chi Lf tin rkng: Thay cua Platon la ngffdi Hy Lap dfeu n^y, ai nay d'6u bict ch^c nhir 2 v6i 2 la 4. Ngoai hai ve : ve (2) thay cua Platon va vd' (3) la ngudi Hy Vay van de pho to n6i chung, dil ph6 d f, tCr hay quy luat, Uip ra, nay c6 them ve' (1) Chi Ly tin rdng khi6'n nly sinh hai van gi^i d^p cho chting ph^i dUdc tint trong tri luan traycn thdng. dc khac : Chi Lf c6 bic't Socratc la thay cua Platon khong, rbi chi day 1^ kha nSng rieng cua tri nSng con ngifdi, kha nSng luon nhln c6 thffc tin Socrate a'y la ngffdi Hy Lap hay khong ? ra c^i \h ph6 qudt d nhffng gi dSc thii, nhct d6 m6i c6 ph6 tiT hay pho f va vice tim giai thich cho moi hicn ttTcJng, tnTdc kia bang Do d6 c'an didn ta bang vie't lai nhff sau : nhffng nguydn nhSn than thi6ng v^ nay bang nhffng dinh lu^t ccJ, - C6 mot va chi c6 mot x Ih thay ciia Platon, x S'y la Socrate, sinh, ly, h6a. va chi Lf tin Socratc la ngirdi Hy Lap t nghTa la dlln ta NghTa cua c5u va nghia cua thanh phSn Ten ridng thi kh6ng nghia, c6n bilu thffc c6 nghia lH bi^u thffc didn ii, theo Russell. Russell ph^t minh If thuyd't Didn tl Theo Wittgenstein, phat ngon didn ti thi do hoa trang thai sff (description) giiip vie't lai cic cSu cho dung ngff ph^p luan \f vat, tffc hoan cdnh ctia d6i tffcfng. Va mot phat ngdn phffc tap quy kh6i ham ho. ve cdc phat ngon ddn lam ncn n6. Do d6, sff dtlng hay sai, cung la gia tri chan 1^^ n^m d cac phat ng6n ddn nay. N6i each khdc, gia tri Thi du cau : - Thay cua Platon la ngudi Hy Lap chan ly cua mQt phat ngon phffc tap dffdc quye't dinh bdi gia tri CSu a'y c6 the' sai ct vS'hai: la ngu
  12. Con ngudi NgOnnga 149 tai sc m the n^o dSy? Va cung tha' nhffng phdl ng6n nhiTcua XuSn ngoai kinh nghiem ra, cdn cSn de'n then may luan If. Vang, do dSu Dicu : cai nicm tin vao 16 gich d6? Cam nhan 16 gich von la vice cua tri 6c ta, vay ne'u mang kinh nghiem d6'i chie'u vdi 16 gich, hay la'y 16 La thi si nghia ru vdi gi6, gich ma kie'n thie't quan he giffa c^c kinh nghiem vdi nhau, ha •» ching phai la lay Tam tri Vat, tffc Duy tam, d6 sao? Ne'u bao 16 Md thco irang vd van cdng may 111 gich cua Tam cung la mpt vdi 16 gich cua thffc tai, thi anh phai lay Wittgenstein khong phai \k nghe si, nSn 6ng khSng Ihd hid'u gi de chffng minh day ? LS'y kinh nghiem ff ? M6i kinh nghiem chi ng6n ngir d ch6 n6 1^ nghc thuat. van, dii trong thd vSn hay tu" dat ta dffng trffdc nhffng gi cu ihc nen dac thff, va nhffng cai ay ti/dng, d6i khi ca Irong khoa hoc nffa, bao gid cung 1^ mot nghe hoac dat ben nhau, hoac n6i du6i nhau trong thdi gian, chff kh6ng thuat. Li nghc thuat chSng nhOng dd t6 didm cho thiSn nhidn bang c6 quan he (nhS't la quan he 16 gich) nao (giffa chiing) dffdc chup ci\n xuS't than cua minh, mi con de bieh h6a ng6n ngff cho hay do hoa ca. them thanh nha. NghIa m hiem khi c6 ngon ngu" tran Irui, vi n6 k(5o iheo mot c^i nhin (khoa hoc) cung tran trui n6't. Va lai, cting nhu" trong vat chat, sir gSp nhau giffa hai phan tijT O va H hay O va C thifdng kh6ng phai la mOt tdng so, nhu-ng tdng hdp, va tong hop nay c6 th6' d6i thay tiiy hoan canh, thi trong ngon ngff, sir giao nhau cua nhffng tir \h. ph^t ngon cung y nhff the'. chiing ta nen nhd, cdch tdng hdp trong ng6n ngff khong phai la mot vdi cdch t6ng hdp trong vat chS't dau. Ngoai ra, nghla cua mot iff c6n c6 the' tiiy thuoc vao nghia cua mot phdt ngon, nghla cua mot phdl ngon lily thuoc vjlo nghla ciia mot cdu, vh. nghla cua m6t cSu tiiy thuoc vao ngff Irinh (discours). Vang, ng6n ngff khdng ph^i la hinh chiip, va quan he trong ng6n ngff ra't sinh dpng. chff khong c6 tinh may m6c nhir Duy nguyen tiV thuyet nghl, trff ra trong chffng minh khoa hoc, nha't la Lrong toan hoc. Bdi cho rang ngon ngff chi bicu trlnh cac trang thai vat cha't, ncn duy nghiem luan ly thuye't ciia Wittgenstein va Russell cung phii nhan sieu hinh hoc va gidi han tric't hoc vao vice phan tich luan \f ve ng6n ngff, tim xem ph^i the' nio d^ mgt phat ngon c6 nghla va nghla a'y la chinh xac va diing. Cai The' nao a'y, iheo ho la: Phai ngon phai quy chie'u vc kinh nghiem va thda man nhffng di^eu kien luan ly, the' th6i. C6 di'eu ho da khdng giSi ihich tai sao.
  13. CHl/dNC 5 : N C O N NCCr V d l 0 6 1 Tl/pNC VA THl/C TAI Nc'u ngirdi n6i hay vifi't ddng ng6n ngff d6 di6n ^, thi ngUdi nghe hay doc cung p h l i qua nghla (cOa ng6n lit) hiiu f Sy. Thyc ra khi n6i hay vid't, tdc gid cung phdi xem nghla cSu n6i kia c6 ph^i Ik mot vdi f (tifdng) m^ minh muoh n6i ra hay khdng. Do d6, thong tin bao gid cung p h l i di qua nghla cua ng6n tilf, nghla ciia ngon tir la ^ tirdng m^ ng6n tir mu6'n n6i Idn. Ngo^i ra, thu'dng thi nghla ciia ng6n tCf cung 1^ c^i (d6i tiTdng) m^ ngon tir muoh chi. NghTa va xac M p M Q I ph^t ng6n dting ngu" phdp thu'dng c6 nghla. NhUttg c6 nghia chu'a ch^c da dung, luy ngtfdi ta cung hio cau c6 nghla 1^ cau dung luon. V i the', Frcge phan ra : c6 nghla k h i hxidng ve phit ngon m^ n6i, nghla Ik noi dung 5^ ttfdng m^ phdt ngon n6i len; c5n khi hiTdng v'e doi tiTdng, Lhi day 1^ sir xdc lap (denotation) m^ phdl ng6n thi/c hien thong qua nghia ciJa n6 d ^ xem phdt ngon 1^ dung hay sai, do d6 mang tdi cho ph^t ng6n m6t giii tri chan 1^. Bi phil ng6n th^nh diing hay sai nhir the', n6 phdi du nghla, n6n day la mot ph^t ngon lo^n tiic, thi du : - Thay ciia Platon 1^ ngu'di dao hanh. Frege cong thtfc h6a theo to^n sir x^c lap Sy- Trong todn, nd'u goi F Ik chiJc nSng (fonction), x Ik dd'i s6 (argument) va y 1^ gi^ tri (valeur), thi ta se c6 : F(x,y)
  14. /5i Con ngUdi Ngon nail 153 V6i" x+2 ", thi ndu x=5, la se c6 F(x,y) = 5+2 = 7 . (trong than thoai Hy Lap) bi mang dd'n Ithaque trong mot gia'c ngii say. Nhrrng cau nhu" the' khong du'dc xkc lap vi doi tiTcJng Ulysse 7 1^ gii tri cua F du'cfc xdc lap bdi "x+2". hay Th^ng cuoi da khong du'dc xkc lap^^. Xem nhu" the', xkc lap qui Bay gicJ, dp dung v6 ng6n ngff, vdi F (Thdy ciia (+) x), c6 gik trj vk siJc manh ciia kh^ng quyd't vay. C6 di'fiu xem ra trong thi ncu X Platon, xic l|p se \l Socrate. N6i cdch khdc, 5^ nghl cua Frege, xkc lap hu'dng ve thiTc tai khi xem xdt nghia cua Socrate Ik gid tri cija chtJc nSng F dif^c xdc lap bdi " T l i a y ci3a x" phkt ngon, trong klii tri ihiJc ngam khing quye't nhiT C6 the', hdp khi X Ik Platon. dung y tirdng cua minh ve thi/c tai a'y. Tird6themm6tbir(5c : N6i rkng qua nghia, phkt ngdn chi dung thi/c tai, thi dd cung Ik c6ng nhan c6 khtng quye't Hi?u b^ng tri thtfc. Qua the', tri thtfc F (x Ik (+) ngirdi dao hanh) ching qua Ik khtng quye't Hifu the' ay qua ^ tu'dng, ttfc qua nghia thi vdi X Ik "Th'Sy ciia Platon" hay "Socrate", thi phkt ngSn cua ngon tiT, vdi ngon luf Ik xkc (ckch nko dd) cua ^ tu'dng. NgO" tokn tiic Ik : tric't khong the' bd qua Tri luan, vk Tri luan khong thd gat HiTu luan sang mpl bdn. - Thay cua Platon (hay Socrate) la ngu"di dao hanh. Phai thti nhan rkng Tri luan (6pistdmologie) truy'en thd'ng chi Phdt ng6n nky Ik dilng, hay gik tri chkn 15^ cua n6 diTdc \ic mang
  15. Con ngUdi ' tai chung chung, khdng cdch n^o ra kh6i n6 trong ^ thtfc (conscience) cua minh. CHl/dNC 6 : 9^ C H A N L Y T R O N C N C O N NCCT K h o a n g each ttf phat ngSn d^'n thtfc t a i D^n xanh dSn dd d nga tu", d6 la hi$u. hieu su6ng, b5i chting khdng mang 5^ nghia gi liT ben trong chung, m^ tCr ngo^i do quy u'dc thoi. Ngon ngu" cung the', ngon ngu* chi c6 tinh quy irdc, Nhtfng tai sao, trifc gidc Hffu thid't tha v6i sir thifc do ba'm quy u-dc tir am v i dd'n tilT v i , tir hinh t6' dS'n nghia 16'. C h i t h 6 ' m ^ tinh, khidn c l ddi hoc h6i va khdng thoi van tra, tun hid'u, cilng Cling mot thiTc tai C H 6 , ne'u ta goi Cho, thi cic ng6n ngu" k h i c l a i luc ngu'cfi ta van me say tieu thuye't v^ phim dnh du'tfc? So 1^, v l dcJi kau \k Khuyen, Dog hay Chien... s6'ng thifc l^m khi kh6ng m i m cifdi v d i anh, v i ngay h6m nay khdng L^m kh cho rkng tiir Ch6 hay Dog du^cJc noi buoc v d i thi/c tai khdc may hom qua va nhiTng ngay trU'dc nffa, ndn nh^m ch^n, C H 6 , nhU"ng thiTc ra, chlang du'dc noi buQC v
  16. Con ngUdi Ngdn ngCt 157 ndi mot dan qu6 cha't pMc, \6i ve mil ham f, khdc xa v(3i cua mgt D61 tiTcfng cfia Nhi doc (deuxi^me lecture) la ng6n ngu" cua hoc gi^ thi6n vSn. truycn thdng. Ng6n ngu" trong truycn thong khdng ph3i chi la cua TCf thifc tai deh f tifSng, kho^ng c^ch da Idn rbi, ma tir 5? k^ n6i ma cdn la cua ngu'di nghe, cua chung cong dong thuoc ngon tirdng den ngon ngi? c5n them mot doan diTdng nffa. Khoang c^ch ngtr a'y. GiiTa cong dbng ng6n ngiT S'y, ng6n ngt? khdng chi dting nay it khi difcfc nhan ra. Chi khi gSp mot kinh nghicm di thifdng cho thdng tin, ma c6n cho thong dm, vi n6 mang mot si?c song tSm hay mot trifc giic doc ddo (nhSt khi chu thd lai 1^ mot nha thd Idn sinh ly. hay tu- tirdng Idn), ngirdi ta m6\ nhrin ro khdng the' diSn h6t Khoang each chSn ly trong ng6n ngff bic'u hi^u bang Idi du"cJc. Va ngu'di ta danh dving Icfi, kh6ng phai dc bicu thi trifc lid'p nffa, ma dc, mpt c^ch gi^n tic'p, gdi f cho ngifdi nghc tif Ng6n ngir thdi chuy6n che" la ngon ngiT cua ngudi n6i, kh6ng hieu la'y, th6' th6i. Lilc d6, nghla ni$m \f cua ngon i\S khdng la mot c6 cho dlTng d day cho ngu'di nghe. Ngirdi c6 quybn n6i, d6 la ong vdi f tiTdng, m^ ciing kh6ng tu'dng b^ng v6i f tiTdng. vua va cac quan, d6 la chinh quydn dS'qu6'c, hay ngirdi cha va 6ng chu. Ngon ngi? ra lenh nhu" the chi can c6 tinh niem \f va chinh N
  17. Connt-Udi Ngdnnga >,y, 159 . ' • -•• ' • • • b m cS'l len lieng n6i vk p h i i diTc^c nghe,
  18. 160 ConngUdi '^JSV*- m nay qua m6l Iruyen thual bidu IriTng. Truyen ihuat bie'u Iriftig a'y c6 the'm mol truyen thuat huycn thoai hay iruycn ihuat lich su". N6 phai du'dc nh^c di lap lai hoai di khai tam cho con chdu ve sau c6 CHl/dNC 7 : TAC PQNC CUA NCON NCCT the' hidu nghiem ngu6n c6i cua minh. Dd' s6'ng hi^u diTcfc nhif the', viec doc thu'dng diTdc nghi'thiJc h6a, tiJc didn ra Irong nghi 16. VA T R U Y E N THONC Tdc d^ng cua ng6n ngif Con ngirdi chi thSt sy tu" tu^dng k^ tiT Wc ph^t minh ng6n ngff. Kh6ng nhifng nghi l6 sinh ra c^m thitc thin thidng, n6 c6n Ng6n ngff ph^t tridn tiT tff, n6n tff tffdng cung Idn manh dan dan. dira ta tho^t kh6i nhi^ng gi la "thiTdng ng^y" (quotidicnnet^) c^i Bdi le ngon ngff 1^ x^c the' cua tff tffdng Ik vffdn ffdm tff tffdng. 16 gich cua chung, dbng thdi difa ta viTcfl l6i nhffng canh gidi uf
  19. Con nguifi 162 Ngdn ngff 163 Hi hia'u them, nghia 1^ kh6ng chSp nhan di bi^t. PhSi lili lai phan Vay ng6n tac khong chi quy ve chi nghia quy \X6c, khi ma n^o inidc tht? dinh nghia thuan trtfu tiTdng Sy thi mdi dfi nhin ra nhieu ngon tac c6n di xa hcfn chi nghia quy irdc, va c6 ngon tac lai nhCfng diem rieng ciia m6i ddi s6ng cung nhu" cic nghia th^i khic khong can den chi nghia quy u'cJc ay. N6i chung, ngon tac tiiy thuoc nhau cua cilng mot tiT. Cling Wc ca vao nghia quy \i6c iSn f nhim cua ngirdi sijrdimg. Nghia tdc va ng6n tic (il-locutlon) PhSn tich hanh vi ngOn tac Ph^l ngon la hanh l^c thco rat nhieu nghia, t^c dong cua M6i phat ngon deu c6 noi dung n6 la nghia nicm ly va khach n6 thuoc nhieu loai kh^c nhau. quan, phan biet v6i y cua ngiTdi n6i va hoan canh, each thiJc cua N6i tir n6 da 1^ h^nh vi, hanh vi n6i (locutoke), dil du^ng trdn phat ngon a'y. Cai noi dung Iran Irui n6i trcn du"cfc goi la dc nghia binh di^n phdt 5m, phit tiT hay ph^t f. Ke tH phit tiT, h^nh vi n6i (proposition). Nghia tran trui theo quy u'dc nay c6 kem theo mot ci5a rieng giong ngu"di. Phdt ttr, dtl chUa hieu nghia, da hid'u 66 Ih lii lire ngOn tac ma Searle dicn ta du^di dang cong thirc loan hpc la cua mot ngu" vifng va theo mot ngu" ph^p, dicu ma con vet hay con F(p), chuycn sang ticng Vict thanh S(dn), \'6i S la site (Force) va yeng khSng l^m n6i. N6i chi d6'n phdt S (rh
  20. Ngdnnga ' 165 Con nguM (, doc thdi, ma cua Nhi doc nffa. Ngon ngff cua Nhi d6c, dd la ng6n That ra, hai cSu cilng rfd nghia da c6 the kh^c nhau ve nghia ngff bicu hicu cua nhdm, cua dSn toe hay giai t^ng xa hoi. Va nhff rbi, it 1^ do ho^n c^nh tiiy d6i tiTdng. NhuT k h i ngiftfi mc chi diJa the'phii cd thdi gian, d i cho minh hoi nhap vao cong dong. Chi k h i con mum m i m m ^ goi la "con heo", thi tieng Heo chi c6 nghia b6o ay, i n h hffdng ct5a anh bang ngdn ngff m d i manh, vffng va sSu. A n h b6o m6t cdch da thiTcfng. Chtf n6u ai Ird mot d^n 6ng m^ goi 1^ da cd ch6 dffng 5 diem lap thanh (fondation) cua ngon ngff ay. Chtf "con heo", thi tieng Heo ay c6 nghia ke th6 tuc hay dam dang, va ncu khong, thi ihuyc'l trinh dil hay, khdo, hilng hon, anh chi cd thd' day la cauchufi. gay dffdc cilm xilc d i m ddng, do dd nhat thdi ihoi. Trong mOt so hoan c i n h , ng6n iic c6n c6 tinh ho^n lie VSng, ngdn ngff truyen th6ng that sff la ngon ngff biS'u hi$u. (perlocutoire) nffa. NhiTkhi trao tSng m6t cdi n h i n , tlii kdm theo eu: Va ngdn ngff bieu hieu khong chi t i c dong d mffe tff va eSu, ma chi trao, anh c6n thdm cSu : - Anh tang em nhan nay... Nhifng phdt c6n va nhat la d mffc ngff trinh (discours). ng6n dien ra irong nghi 16 thiTdng c6 tinh ho^n tie nhu" thd'. Nhu" Ndi den ngff trinh, thi ngff trinh cd Sm hffdng sau nha't la ngff irong Ph
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2