intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề cương ôn tập HK 2 môn Toán lớp 8 năm 2017-2018 - THCS Cự Khối

Chia sẻ: Trần Văn Hiếu | Ngày: | Loại File: PDF | Số trang:4

72
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề cương ôn tập HK 2 môn Toán lớp 8 năm 2017-2018 - THCS Cự Khối cung cấp cho các bạn những kiến thức và những câu hỏi bài tập giúp các bạn củng cố lại kiến thức đã học và làm quen với dạng bài tập. Hy vọng nội dung tài liệu giúp các bạn đạt kết quả cao trong kỳ thi sắp tới.

Chủ đề:
Lưu

Nội dung Text: Đề cương ôn tập HK 2 môn Toán lớp 8 năm 2017-2018 - THCS Cự Khối

UBND QUẬN LONG BIÊN<br /> TRƯỜNG THCS CỰ KHỐI<br /> <br /> ĐỀ CƯƠNG ÔN TẬP HỌC KÌ 2- NĂM HỌC 2017 -2018<br /> MÔN TOÁN 8<br /> A. Lí thuyết:<br /> I. ĐẠI SỐ<br /> 1. Phương trình bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu<br /> 2. Bất đẳng thức, bất phương trình bậc nhất một ẩn<br /> 3. Phương trình tương đương, bất phương trình tương đương<br /> 4. Các quy tắc biến đổi tương đương phương trình, bất phương trình<br /> 5. Giải bài toán bằng cách lập phương trình<br /> 6. Phương trình chứa dấu giá trị tuyệt đối.<br /> II. HÌNH HỌC<br /> 1) Định lý Talet, định lý Talet đảo, hệ quả của định lý Talet.<br /> 2) Tính chất đường phân giác của tam giác.<br /> 3) Các trường hợp đồng dạng của tam giác, tam giác vuông.<br /> 4) Mối quan hệ giữa tỉ số diện tích của hai tam giác đồng dạng, tỉ số chu vi của hai tam giác<br /> đồng dạng với tỉ số đồng dạng của tam giác đó.<br /> 5) Hình hộp chữ nhật, hình lăng trụ đứng, hình chóp đều, hình chóp cụt đều<br /> 6) Thể tích hình hộp, diện tích xung quanh, thể tích hình lăng trụ đứng, diện tích xung quanh,<br /> thể tích của hình chóp đều.<br /> B. BÀI TẬP<br /> I. ĐẠI SỐ<br /> *Dạng 1: Giải phương trình<br /> Bài 1. Phương trình dạng đưa được về dạng ax + b =0<br /> 1) 4x – 10 = 0<br /> 2) 2x + x +12 = 0<br /> 3) x – 5 = 3 – x<br /> 4) 2x – (3 – 5x) = 4( x +3)<br /> 3x  2<br /> 3  2( x  7)<br /> 5 <br /> 6<br /> 4<br /> <br /> 5) 5(2x-3) - 4(5x-7) =19 - 2(x+11)<br /> <br /> 6)<br /> <br /> Bài 2. Phương trình tích<br /> 1) (x+2)(x-3) = 0<br /> 3) x(x2-1) = 0<br /> 5) (x+6)(3x-1) + x+6 = 0<br /> 7) (x+4)(5x+9)-x-4 = 0<br /> 9) (2x - 7)2 – 6(2x - 7)(x - 3) = 0<br /> 11) x2 – 5x + 6 = 0<br /> Bài 3. Phương trình chứa ẩn ở mẫu<br /> <br /> 2) (x-1)(x+5)(-3x+8) = 0<br /> 4) (4x-1)(x-3) = (x-3)(5x+2)<br /> 6) (2x + 5)2 = (x + 2)2<br /> 8) (1 –x )(5x+3) = (3x -7)(x-1)<br /> 10) (x-2)(x+1) = x2 -4<br /> 12) 2x3 + 6x2 = x2 + 3x<br /> <br /> 5x 1 5 x  7<br /> <br /> 3x  2 3 x  1<br /> 1  6 x 9 x  4 x (3 x  2)  1<br /> 3)<br /> <br /> <br /> x2 x2<br /> x2  4<br /> <br /> x 1<br /> 1<br />  2<br /> x2 x 4<br /> 3x  2<br /> 6<br /> 9x2<br /> 4)<br /> <br /> <br /> 3x  2 2  3x 9 x 2  4<br /> <br /> 1)<br /> <br /> 2)<br /> <br /> 1<br /> <br /> 3<br /> 2<br /> 8  6x<br /> <br /> <br /> 1  4 x 4 x  1 16 x 2  1<br /> 1<br /> 12<br /> <br /> 8)1 <br /> x  2 8  x3<br /> x 5<br /> x5<br /> x  25<br />  2<br />  2<br /> 10) 2<br /> x  5 x 2 x  10 x 2 x  50<br /> <br /> 3<br /> 2<br /> 4<br /> <br /> <br /> 2<br /> 5 x  1 3  5 x 5 x  16 x  3<br /> 1<br /> 3x2<br /> 2x<br />  3<br />  2<br /> 7)<br /> x 1 x 1 x  x 1<br /> x<br /> 2x<br />  2<br /> 0<br /> 9)<br /> x 1 x 1<br /> <br /> 5)<br /> <br /> 6)<br /> <br /> *Dạng 2: Giải toán bằng cách lập phương trình:<br /> Bài 1: Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Lúc về người đó đi với vận tốc 12<br /> km/h, nên thời gian về lâu hơn thời gian đi là 30 phút. Tính quãng đường AB?<br /> Bài 2: Đường sông từ thành phố A đến thành phố B ngắn hơn đường bộ là 10 km. Canô đi từ<br /> A đến B hết 3h20’ ô tô đi hết 2h. Vận tốc của canô nhỏ hơn vận tốc của ôtô là 17 km/h. Tính<br /> vận tốc của canô ? Và độ dài đoạn đường bộ từ A đến B ?<br /> Bài 3: Hai xe khách khởi hành cùng 1 lúc từ 2 địa điểm A và B cách nhau 140 km, đi ngược<br /> chiều nhau và sau 2 giờ chúng gặp nhau. Tính vận tốc mỗi xe biết xe đi từ A có vận tốc lớn<br /> hơn xe đi từ B là 10 km?<br /> Bài 4: Một tàu thủy chạy trên một khúc sông dài 80 km. Cả đi lẫn về mất 8 giờ 20 phút. Tính<br /> vận tốc của tàu thủy khi nước yên lặng, biết rằng vận tốc của dòng nước bằng 4 km/h<br /> Bài 5: Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Người<br /> đó dự định làm mỗi ngày 45 sản phẩm. Sau khi làm được hai ngày, người đó nghỉ 1 ngày, nên<br /> để hoàn thành công việc đúng kế hoạch, mỗi ngày người đó phải làm thêm 5 sản phẩm. Tính<br /> số sản phẩm người đó được giao.<br /> Bài 6: Trong tháng đầu hai tổ công nhân sản xuất được 800 chi tiết máy. Tháng thứ hai, tổ I<br /> vượt mức 15%, tổ II vượt mức 20%, do đó cả hai tổ sản xuất được 945 chi tiết máy. Tính xem<br /> trong tháng đầu mỗi tổ đã sản xuất được bao nhiêu chi tiết máy.<br /> Bài 7: Hai thư viện có tất cả 40 000 cuốn sách . Nếu chuyển từ thư viện thứ nhất sang thư viện<br /> thứ hai 2000 cuốn thì sách hai thư viện bằng nhau. Tìm số sách lúc đầu của mỗi thư viện<br /> Bài 8: Số lúa ở kho thứ nhất gấp đôi kho thứ 2. Nếu bớt ở kho thứ nhất đi 750 tạ và thêm vào<br /> kho thứ 2 350 tạ thì số lúa ở trong hai kho bằng nhau. Tính xem lúc đầu mỗi kho có bao nhiêu<br /> lúa?<br /> Bài 9: Một phân số có tử nhỏ hơn mẫu 3 đơn vị. Nếu thêm tử 11 đơn vị và mẫu 17 đơn vị thì<br /> được phân số bằng 4/7. Tìm phân số ban đầu.<br /> Bài 10: Một hình chữ nhật có chu vi bằng 320m. Nếu tăng chiều dài 10m, tăng chiều rọng<br /> 20m thì diện tích tăng 2700m2. Tính mỗi chiều<br /> Bài 11: Một hình chữ nhật có chiều dài hơn chiều rộng 7m, đường chéo có độ dài 13m. Tính<br /> diện tích của hình chữ nhật đó ?<br /> *Dạng 3 : Bất phương trình và chứng minh bất đẳng thức :<br /> Bài 1: Giải BPT và biểu diễn tập nghiệm trên trục số:<br /> a) 3x – 6 < 0<br /> b) 5x + 15 > 0<br /> c) -4x + 1 > 17<br /> Bài 2: Giải BPT:<br /> a)<br /> <br /> 2 x  5 3x  1 3  x 2 x  1<br /> <br /> <br /> <br /> 3<br /> 2<br /> 5<br /> 4<br /> <br /> d) 2x - x(3x+1) < 15 – 3x(x+2)<br /> Bài 3: Chứng minh rằng:<br /> <br /> 3  2x 7 x  5<br /> <br /> x<br /> 2<br /> 2<br /> e) 4(x-3)2 –(2x-1)2  12x<br /> <br /> b) 5 x <br /> <br /> d) -5x + 10 < 0<br /> <br /> c)<br /> <br /> 7x  2<br /> x2<br />  2x  5 <br /> 3<br /> 4<br /> <br /> f) 5(x-1)-x(7-x) < x<br /> 2<br /> <br /> 2<br /> <br /> 2<br /> <br /> a) a + b – 2ab  0<br /> <br /> b)<br /> <br /> a 2  b2<br />  ab<br /> 2<br /> <br /> c) a(a + 2) < (a + 1)2<br /> <br /> 1 1<br /> e) (a  b)    4 (với a > 0, b > 0)<br /> a b<br /> *Dạng 4: Phương trình chứa giá trị tuyệt đối<br /> 1) |3x| = x +7<br /> 2) |-4,5x| = 6 + 2,5x<br /> 3) |3x| - x – 4 = 0<br /> 4) 9 – |-5x| + 2x = 0<br /> 2<br /> 2<br /> 5) (x + 1) + |x + 10| - x - 12 = 0<br /> 6) |4 - x| + x2 – (5 + x)x =0<br /> 7) |x - 9| = 2x + 5<br /> <br /> d) m2 + n2 + 2  2(m + n)<br /> <br /> *Dạng 5: Chứng minh hình học tổng hợp<br /> Bài 1: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H .Đường vuông góc với<br /> AB tại B và đừơng vuông góc với AC tại C cắt nhau tại K.Gọi M là trung điểm của BC.<br /> Chứng minh rằng :<br />  ADB ~  AEC;  AED ~  ACB.<br /> a)<br /> b) HE.HC = HD. HB<br /> c) H,M,K thẳng hàng<br /> d) Tam giác ABC phải có điều kiện gì thì tứ giác BHCK sẽ là hình thoi? Hình chữ<br /> nhật?<br /> Bài 2: Cho tam giác ABC cân tại A , trên BC lấy điểm M . Vẽ ME , MF vuông góc với<br /> AC,AB,Kẻ đường cao CA ,chứng minh :<br /> a) Tam giác BFM đồng dạng với tam giác CEM.<br /> b) Tam giác BHC đồng dạng với tam giác CEM.<br /> c) ME + MF không thay đổi khi M di động trên BC.<br /> Bài 3 : Cho tam giác ABC vuông ở A ,có AB = 6cm; AC = 8cm. Vẽ đường cao AH và phân<br /> giác BD.<br /> a) Tính BC.<br /> b) Chứng minh AB2 = BH.BC.<br /> c) Vẽ phân giác AM của góc A (M  BC), chứng minh H nằm giữa B và M.<br /> d) Tính AD,DC.<br /> e) Gọi I là giao điểm của AH và BD, chứng minh CB.BI = BD.AB.<br /> f) Tính diện tích tam giác ABH.<br /> Bài 4: Cho tứ giác ABCD có AC cắt BD tại O, góc ABD bằng góc ACD. Gọi E là giao điểm<br /> của AD và BC. Chứng minh rằng:<br /> a) Các tam giác AOB và DOC đồng dạng<br /> b) Các tam giác AOD và BOC đồng dạng<br /> c) EA.ED = EB.EC<br /> Bài 5: Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau ở H.<br /> a) CMR : AE . AC = AF . AB<br /> 3<br /> <br /> b) CMR Δ AFE Δ ACB<br /> c) CMR: Δ FHE Δ BHC<br /> d ) CMR : BF . BA + CE . CA = BC2<br /> Bài 6: Gọi AC là đường chéo lớn của hình bình hành ABCD. E và F lần lượt là hình chiếu<br /> của C trên AB và AD, H là hình chiếu của D trên AC. Chứng minh rằng:<br /> a) AD . AF = AC . AH<br /> b) AD . AF + AB . AE = AC 2<br /> Bài 7 : Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường<br /> thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh<br /> a)  ABE<br />  ACF<br /> b) AE . CB = AB . EF<br /> c) Gọi I là trung điểm của BC . Chứng minh H, I, D thẳng hàng.<br /> Bài 8 : Cho hình hộp chữ nhật ABCDABCD có AB = 10cm ; BC = 20 cm ;<br /> AA = 15cm . a) Tính thể tích hình hộp chữ nhật .<br /> b ) Tính độ dài đường chéo AC của hình hộp chữ nhật.<br /> Bài 9: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ;<br /> cạnh bên SA = 12 cm . Tính :<br /> a) Đường chéo AC b) Tính đường cao SO và thể tích hình chóp .<br /> *Dạng 6: Một số bài toán thực tiễn:<br /> Bài 1: Một trạm biến áp 110kV đặt tại điểm A trên đất liền được kéo dây điện ra Côn Đảo<br /> (điểm C). Trên đất liền người ta chọn điểm B tại vị trí sao cho đường thẳng xuất phát từ A và<br /> C vuông góc với nhau tại B. Trên đường AB người ta chọn vị trí điểm G để kéo dây điện từ<br /> đất liền ra đảo. Biết BC = 60km, AB = 100km, mỗi km dây điện dưới nước là 5000USD, chi<br /> phí cho mỗi km dây điện trên bờ là 3000USD. Hỏi điểm G cách A bao nhiêu km thì chi phí<br /> kéo dây điện từ A đến G và từ G đến C là thấp nhất?<br /> Bài 2: Một bác nông dân muốn xây một hố ga không nắp có dạng hình hộp chữ nhật với thể<br /> tích là 3200cm3. Tỉ số giữa chiều cao của hố và chiều rộng của đáy là 2. Hãy xác định diện<br /> tích của đáy hố ga này để khi xây tiết kiệm được nhiều nguyên vật liệu nhất.<br /> Bài 3: Một căn phòng học có hình dạng hình hộp chữ nhật với kích thước chiều dài là 5,2m;<br /> chiều rộng là 4,3m; chiều cao là 3,1m. Người ta muốn sơn các bức tường xung quanh phòng<br /> và trần nhà. Biết ở các bức tường có 6 cửa sổ với kích thước 0,8m x 1m và 2 cửa ra vào với<br /> kích thước là 2m x 85cm. Hỏi diện tích cần sơn của căn phòng là bao nhiêu?<br /> BGH duyệt<br /> <br /> TTCM, NTCM duyệt<br /> <br /> Người lập<br /> <br /> Nguyễn Xuân Lộc<br /> <br /> Phạm Thùy Linh<br /> 4<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2