ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (8)
lượt xem 8
download
Tham khảo tài liệu 'đề ôn thi môn toán 2011 khối a số (8)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (8)
- http://ductam_tp.violet.vn/ KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn: Toán. Khối A, B . Thời gian làm bài: 180 phút (Không kể thời gian giao đề) 2x 1 Câu I. (2 điểm). Cho hàm số (1). y x 1 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Tìm đ iểm M thuộc đồ thị (C) đ ể tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích hệ số góc bằng - 9. Câu II. (2 điểm) 1 1 2. 1) G iải phương trình sau: x 2 x2 sin 4 2 x c os 4 2 x c os 4 4 x . 2) G iải phương trình lượng giác: tan( x ). tan( x ) 4 4 Câu III. (1 điểm) Tính giới hạn sau: 3 ln(2 e e.c os2 x ) 1 x 2 L lim x2 x0 Câu IV . (2 điểm) Cho hình nón đỉnh S có độ d ài đường sinh là l, bán kính đường tròn đáy là r. Gọi I là tâm mặt cầu nội tiếp hình nón (mặt cầu bên trong hình nón, tiếp xúc với tất cả các đường sinh và đường tròn đáy của nón gọi là mặt cầu nội tiếp hình nón). 1. Tính theo r, l diện tích mặt cầu tâm I; 2. Giả sử độ d ài đường sinh của nón không đổi. Với điều kiện nào của bán kính đáy thì diện tích mặt cầu tâm I đạt giá trị lớn nhất? Câu V (1 điểm) Cho các số thực x, y, z thỏa mãn: x 2 + y2 + z2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: P = x 3 + y3 + z3 – 3xyz. 1 Câu VI. (1 điểm) Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm I ( ; 0) 2 Đường thẳng AB có phương trình: x – 2 y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó. Câu VII. (1 điểm) Giải hệ phương trình : x 2 2010 2 2 2009 y x y 2 2010 3 log 3 ( x 2 y 6) 2 log 2 ( x y 2) 1 --------------- HẾT --------------- Ghi chú: - Thí sinh không được sử dụng bất cứ tài liệu gì! - Cán bộ coi thi không giải thích gì thêm! Họ và tên thí sinh: ……….…………………Số báo danh:
- HƯỚNG DẪN CÂU NỘI DUNG ĐIỂM I.1 2x 1 3 Hàm số: y 2 x 1 x 1 +) Giới hạn, tiệm cận: lim y 2; lim y 2; lim y ; lim y x ( 1) x ( 1) x x - TC đứng: x = -1; TCN: y = 2. 3 +) y ' 0, x D 2 x 1 +) BBT: x - -1 + y' + || + y 2 || 2 +) ĐT: 1 điểm 8 6 4 2 -10 -5 5 10 -2 -4 -6 I.2 y yI 3 3 +) Ta có I(- 1; 2). Gọi M (C ) M ( x0 ; 2 ) k IM M xM xI ( x0 1) 2 x0 1 3 +) Hệ số góc của tiếp tuyến tại M: kM y '( x0 ) 1 điểm 2 x0 1 +) ycbt kM .k IM 9 +) Giải được x0 = 0; x0 = -2. Suy ra có 2 điểm M thỏa mãn: M(0; - 3), M(- 2; 5) II.1 +) ĐK: x ( 2; 2) \ {0} x y 2 xy 2 x 2 , y 0 Ta có hệ: 2 +) Đặt y 2 x y 2 1 3 1 3 x x 1 điểm 2; 2 +) Giải hệ đx ta được x = y = 1 và 1 3 1 3 y y 2 2 1 3 +) Kết hợp điều kiện ta được: x = 1 và x 2 II.2 +) ĐK: x k ,k Z 4 2 ) tan( x) tan( x) tan( x) cot( x) 1 4 4 4 4 1 điểm 12 11 sin 2 x cos 2 x 1 sin 4 x cos 2 4 x 4 4 2 22 pt 2 cos 4 4 x cos 2 4 x 1 0
- +) Giải pt được cos24x = 1 cos8x = 1 x k và cos24x = -1/2 (VN) 4 +) Kết hợp ĐK ta được nghiệm của phương trình là x k ,k Z 2 III 3 3 ln(2 e e.c os2 x ) 1 x 2 ln(1 1 c os2 x ) 1 1 x 2 L lim lim x2 x2 x 0 x 0 2 2 x) 1 3 1 x 2 2 2 x) ln(1 2 sin lim ln(1 2 sin 1 1 điểm lim x 0 x0 x2 3 (1 x 2 ) 2 3 1 x 2 1 x2 x2 2 sin 2 x 2 sin 2 x 2 sin 2 x 2 sin 2 x 15 2 33 IV.1 +) Gọi rC là bán kính mặt cầu nội tiếp nón, và cũng là bán kính đường tròn nội tiếp tam giác SAB. S 1 S SAB prC (l r ).rC SM . AB 2 l 2 2 1 điểm l r .2r l r Ta có: rC r 2(l r ) lr I lr 2 2 +) Scầu = 4 r C 4 r l r r A M B +) Đặt : IV.2 lr 2 r 3 y (r ) ,0 r l lr 5 1 r l 2 2 2r (r rl l ) 2 ) y '(r ) 0 (l r ) 2 5 1 r l 2 +) BBT: 1 điểm r 5 1 l 0 l 2 y'(r) y(r) ymax 5 1 +) Ta có max Scầu đạt y(r) đạt max r l 2 +) Ta có V P ( x y z )( x 2 y 2 z 2 xy yz zx ) x 2 y 2 z 2 ( x y z )2 P ( x y z) x2 y 2 z 2 2 2 ( x y z )2 ( x y z )2 P ( x y z) 2 ( x y z ) 3 2 2 1 điểm 13 +) Đặt x +y + z = t, t 6 ( Bunhia cov xki) , ta được: P (t ) 3t t 2 +) P '(t ) 0 t 2 , P( 6 ) = 0; P( 2) 2 2 ; P( 2) 2 2 +) KL: MaxP 2 2; MinP 2 2
- VI 5 = 5 AB = 2 5 BD = 5. +) d ( I , AB) AD 2 +) PT đường tròn ĐK BD: (x - 1/2)2 + y2 = 25/4 x 2 1 25 ( x )2 y 2 y 2 A( 2; 0), B(2; 2) hệ: 2 +) Tọa độ A, B là nghiệm của 4 x 2 x 2y 2 0 y 0 C (3;0), D(1; 2) VII x 2 2010 2 2 2009 y x (1) y 2 2010 3 log 3 ( x 2 y 6) 2 log 2 ( x y 2) 1(2) +) ĐK: x + 2y = 6 > 0 và x + y + 2 > 0 +) Lấy loga cơ số 2009 và đưa về pt: x 2 log 2009 ( x 2 2010) y 2 log 2009 ( y 2 2010) +) Xét và CM HS f (t ) t log 2009 (t 2010), t 0 đồng biến, từ đó suy ra x 2 = y2 x = y, x = - y +) Với x = y thế vào (2) và đưa về pt: 3log3(x +2) = 2log2(x + 1) = 6t t t 1 8 Đưa pt về dạng 1 , cm pt này có nghiệm duy nhất t = 1 9 9 x = y =7 +) Với x = - y thế vào (2) đ ược pt: log3(y + 6) = 1 y = - 3 x = 3 Ghi chú: - Các cách giải khác với cách giải trong đáp án mà vẫn đúng, đủ thì cũng cho điểm tối đa. - Người chấm có thể chia nhỏ thang điểm theo gợi ý các bước giải.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 1
5 p | 605 | 339
-
Đề thi thử đại học môn toán khối D 2010 -2011 lần 1 Trường THPT Chuyên Hạ Long
6 p | 220 | 92
-
Chuyên đề ôn thi đại học - Chuyên đề phương pháp tọa độ trong mặt phẳng
4 p | 170 | 46
-
Chuyên đề ôn thi: Hình học giải tích trong không gian
18 p | 139 | 35
-
Đề thi thử đại học môn Toán 2011 - đề 13
3 p | 151 | 34
-
Đề thi thử đại học môn Toán 2011 - đề 16
4 p | 101 | 29
-
Đề thi thử đại học môn Toán 2011 - đề 14
5 p | 141 | 21
-
ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 (đề 11)
5 p | 66 | 16
-
Đề luyệ thi môn toán - đề 2
4 p | 98 | 11
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (10)
5 p | 62 | 6
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (2)
6 p | 73 | 6
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (1)
5 p | 55 | 6
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (5)
6 p | 64 | 5
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (6)
5 p | 56 | 5
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (7)
6 p | 73 | 5
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (9)
9 p | 58 | 5
-
ĐỀ ÔN THI MÔN TOÁN 2011 KHỐI A SỐ (4)
6 p | 65 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn