Đề thi chọn học sinh giỏi môn Toán lớp 12 lần 2 năm học 2012-2013 – Sở Giáo dục và Đào tạo Ninh Bình (Đề chính thức)
lượt xem 3
download
Mời các bạn cùng tham khảo "Đề thi chọn học sinh giỏi môn Toán lớp 12 lần 2 năm học 2012-2013 – Sở Giáo dục và Đào tạo Ninh Bình (Đề chính thức)" để biết được cấu trúc đề thi cũng như những dạng bài chính được đưa ra trong đề thi. Từ đó, giúp các bạn học sinh có kế hoạch học tập và ôn thi hiệu quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi chọn học sinh giỏi môn Toán lớp 12 lần 2 năm học 2012-2013 – Sở Giáo dục và Đào tạo Ninh Bình (Đề chính thức)
- SỞ GD&ĐT NINH BÌNH ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT Kỳ thi thứ hai Năm học 2012 – 2013 ĐỀ THI CHÍNH THỨC MÔN: TOÁN Ngày thi 18/12/2012 (Thời gian làm bài 180 phút, không kể thời gian giao đề) Đề thi gồm 05 câu, trong 01 trang Câu 1 (3,0 điểm). Cho hàm số y = x3 + 2mx2 + (m + 3)x + 4 (m là tham số) có đồ thị là (Cm), đường thẳng d có phương trình y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m để d cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Câu 2 (6,0 điểm). 1 1. Cho phương trình 2cos2x – mcosx = sin4x + msinx, m là tham số (1). 4 a) Giải phương trình (1) khi m = 2. b) Tìm m để phương trình (1) có nghiệm trong đoạn [0, ]. 4 2. Giải phương trình 3 x + 3 − 5 − 2 x − x3 + 3 x 2 + 10 x − 26 = 0, x ᄀ . Câu 3 (4,0 điểm). 1. Tìm hệ số của x18 trong khai triển của (2 – x2)3n biết n ᄀ * thoả mãn đẳng thức sau: C20n + C22n + C24n + ... + C22nn = 512 . 2. Cho dãy số (un) với un + 1 = a.un + b, n 1 , a, b là 2 số thực dương cho trước. Với n 2, tìm un theo u1, a, b và n. Câu 4 (5,0 điểm). 1. Cho khối lăng trụ tam giác ABC.A’B’C’. Gọi I, J, K lần lượt là trung điểm của các cạnh AB, AA’ và B’C’. Mặt phẳng (IJK) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó. 2. Cho khối tứ diện ABCD có cạnh AB > 1, các cạnh còn lại có độ dài không lớn hơn 1. Gọi V là thể tích của khối tứ diện. Tìm giá trị lớn nhất của V. Câu 5 (2,0 điểm). Cho ba số thực dương a, b, c thoả mãn a + b + c = 3. Chứng minh rằng: a2 b2 c2 + + 1. a + 2b 2 b + 2c 2 c + 2a 2 Dấu đẳng thức xảy ra khi nào? HẾT Họ và tên thí sinh :....................................................... Số báo danh ........................................
- Họ và tên, chữ ký: Giám thị 1:................................................................................................... Họ và tên, chữ ký: Giám thị 2:...................................................................................................
- SỞ GD&ĐT NINH BÌNH HDC ĐỀ THI CHỌN HSG LỚP 12 THPT Kỳ thi thứ hai Năm học 2012 – 2013 MÔN: TOÁN Ngày thi: 18/12/2012 (Hướng dẫn chấm gồm 04 trang) A) Hướng dẫn chung: 1) Học sinh làm đúng đến đâu thì giám khảo chấm đến đó. Học sinh trình bày theo cách khác mà đúng thì giám khảo chấm tương ứng biểu điểm của HDC. 2) Việc chi tiết hóa thang điểm phải đảm bảo không làm sai lệch biểu điểm cua HDC và ̉ phải được thống nhất trong toàn hội đồng chấm thi. 3) Điểm của bài thi không làm tròn. B) Hướng dẫn cụ thể: Đáp án Điể Câu m Xét phương trình hoành độ giao điểm của (C) và d: x3 + 2mx2 + (m + 3)x + 4 = x + 4 x(x2 + 2mx + m + 2) = 0 x 0 0,5 x2 2mx m 2 0 * d cắt (C) tại 3 điểm phân biệt PT (*) có 2 nghiệm phân biệt khác 0 ' m2 m 2 0 0,5 m ; 2 2; 1 2; m 2 0 Khi đó B = (x1; x1 + 4), C = (x2; x2 + 4) với x1, x2 là hai nghiệm của (*). 1 x1 x 2 2m 0,5 (3,0 Theo Viét ta có x1 x 2 m 2 điểm 2 2 ) � BC = 2 ( x1 - x2 ) = 2 ( x1 + x2 ) - 8 x1 x2 = 2 2 ( m 2 - m - 2) 0,5 Ta có khoảng cách từ K đến d là h = 2 . Do đó diện tích KBC là: 0,5 1 1 S = .h.BC = 2.2 2 ( m 2 - m - 2) = 2 m 2 - m - 2 2 2 1 ᄀ 137 S = 8 2 � 2 m2 - m - 2 = 8 2 � m = (TM ) . 2 0,5 1 ᄀ 137 Vậy m = . 2 2 1a. (2,5 điểm) (6,0 1 1,0 2cos2x – mcosx = sin4x + msinx điểm 4 ) 4cos2x sin2x.cos2x – 2m(sinx + cosx) = 0 cos2x(4 sin2x) – 2m(sinx + cosx) = 0 (cos2x – sin2x)(4 sin2x) 2m(sinx + cosx) = 0 (sinx + cosx)[(cosx – sinx)(4 sin2x) 2m] = 0
- ᄀsin x + cosx = 0 (2) ᄀ ᄀ ᄀᄀ(cosx - sin x)(4 - sin 2 x) - 2m = 0 (3) � p� p *Giải (2): sin x + cosx = 0 � sin ᄀᄀᄀ x + ᄀᄀᄀ = 0 � x = - + k p� ,k ? . 0,5 � 4� 4 *Giải (3): (cosx - sin x)(4 - sin 2 x) - 2m = 0 . Đặt t = cosx sinx, t � 2 � sin 2 x = 2sin x cos x = 1 - t 2 0,5 PT (3) trở thành: t ( 3 + t ) - 2m = 0 � t + 3t - 2m = 0 (4) 2 3 Với m = 2, PT (4) trở thành: t + 3t - 4 = 0 � ( t - 1) ( t + t + 4) = 0 � t = 1 3 2 Với t = 1, ta có: � p� 2 p p cos x - sin x = 1 � cos ᄀᄀ x + ᄀᄀᄀ = � x + = � + k 2p� ,k ? ᄀ� 4 � 2 4 4 ᄀx = k 2p, k ᄀ ? 0,5 ᄀ ᄀ ᄀ p ᄀx = - + k 2p, k ᄀ ? . ᄀᄀ 2 Vậy với m = 2, PT đã cho có nghiệm: p p x = - + k p , x = k 2p, x = - + k 2p (k ᄀ ? ). 4 2 1b. (1,5 điểm) Nghiệm của (2) không thuộc đoạn [0, ] nên để PT đã cho có nghiệm thuộc 4 0,5 đoạn [0, ] thì PT (3) phải có nghiệm thuộc đoạn [0, ] hay PT (4) có nghiệm 4 4 thuộc đoạn [0, 1]. Ta có: t 3 + 3t - 2m = 0 � t 3 + 3t = 2m (5). Xét hàm số f(t) = t3 + 3t liên tục trên ? có f '(t) = 3t2 + 3 > 0 " t ᄀ ? . Suy ra: 0,5 min f (t ) = f (0) = 0, m ax f (t ) = f (1) = 4 . [ 0,1] [ 0,1] PT (5) có nghiệm trên đoạn [0, 1] min f (t ) ���� [ 0,1] 2ᄀmᄀᄀ ᄀm ax f (t ) 0 [ 0,1] 2m 4 0 m 2. 0,5 Vậy m ᄀ [ 0, 2] là giá trị cần tìm của m. 2. (2,0 điểm) � 5� −1; . Điều kiện: x �� 0,25 � 2�� PT � ( ) ( 3x + 3 - 3 - ) 5 - 2 x - 1 - x 3 + 3 x 2 + 10 x - 24 = 0 0,5 3( x - 2) 2 ( x - 2) 0,5 � + - ( x - 2) ( x 2 - x - 12) = 0 3x + 3 + 3 5 - 2 x +1 � 3 2 � � ( x - 2) � + - x 2 + x + 12� =0 � �3 x + 3 + 3 5 - 2 x + 1 � �
- ᄀx = 2 ᄀ ᄀ ᄀ 3 2 ᄀ + - x 2 + x + 12 = 0 ᄀᄀ 3 x + 3 + 3 5 - 2 x +1 � 5� � 5� Xét hàm số f ( x) = - x 2 + x + 12, x �� - 1; � . Ta có f(x) liên tục trên � - 1; � . � � 2� � � � 2� � 1 Ta có f'(x) = 2x + 1, f'(x) = 0 x = . 0,5 2 � 5 1 � � 33 49 � 33 Do đó min f ( x ) = min � � f (- 1); f ( 2 ); f ( 2 )� � = min 10, , �= > 0 . � � 4 4� � 5� � - 1; � � 2� � �� � � � 4 � � 3 2 � 5� � + - x 2 + x + 12 > 0 " x �� - 1; � . 3x + 3 + 3 5 - 2 x +1 � � 2� � 0,25 Vậy PT đã cho có nghiệm duy nhất x = 2. 1. (2,0 điểm) Ta có: ( 1 + 1) 2n = C20n + C21n + C22n + C23n + ... + C22nn −1 + C22nn (1) 0,5 Ta có: ( 1 − 1) 2n = C20n − C21n + C22n − C23n + ... − C22nn −1 + C22nn (2) Cộng từng vế (1) và (2) ta được: 22 n = 2 ( C20n + C22n + C24n + ... + C22nn ) � C20n + C22n + C24n + ... + C22nn = 22 n −1 0,5 Theo bài ra ta có: 22 n- 1 = 512 � 2n - 1 = 9 � n = 5 3 i 15 15 i i 2i 0,5 Từ đó (2 – x2)3n = (2 – x2)15 = C15 ( 2) ( 1) x (4,0 i i 0 15 i i điểm ᄀ Hệ số của x là số C15 2 ( 1) sao cho 2i = 18 ᄀ i = 9. 18 0,5 ) Vậy hệ số của x18 là: C159 2 6 = 320.320 2. (2,0 điểm) " n ᄀ 1, un+1 = aun + b � un+1 - un = a (un - un- 1 ), " n �2. 0,5 Đặt vn = un+1 - un , n �� 1 vn = avn- 1 , n �� 2 (vn ) là một cấp số nhân có công 0,5 bội bằng a. Ta có: " n ᄀ 1, vn = v1.a n- 1 ; v1 = (a - 1)u1 + b . 0,5 Vậy ta có: " n ᄀ 2, un = (un - un- 1 ) + (un- 1 - un- 2 ) + ..... + (u2 - u1 ) + u1 0,5 = v1 (a n- 2 + a n- 3 + ...... +1) + u1 = u1.a n- 1 + b(a n- 2 + a n- 3 + ...... + 1) 4 1. (3,0 điểm) (5,0 E Dựng đúng thiết diện 0,5 điểm Chứng minh EI = IJ = JF. Từ đó suy ra I ) A B EB EM FA ' 1 FN 1 0,5 M = = = . Lại từ đó suy ra = . C EB ' EK FB ' 3 FK 2 J Ta có: d(K, A'B') = (1/2)d(C', A'B'), FB' = (3/2)A'B'. EB 1 A' Suy ra SKFB’ = (3/4)SA’B’C’. Mặt khác vì = nên F N B' EB ' 3 0,5 K C' suy ra d(E, (KFB’)) = (3/2)h (h là chiều cao lăng trụ). Do đó VEKFB’ = (3/8)V (V là thể tích lăng trụ) . VEBIM EI EM EB 1 1 1 1 1 3 1 0,5 = . . = . . = nên VEBIM = . V = V . VEB ' FK EF EK EB ' 3 3 3 27 27 8 72
- VFA ' JN FJ FA ' FN 1 1 1 1 1 3 1 = . . = . . = nên VFA’JN = . V = V . 0,5 VFB ' EK FE FB ' FK 3 3 2 18 18 8 48 Mặt phẳng (IJK) chia khối lăng trụ thành hai phần. Gọi V1 là thể tích phần chứa điểm B' và V2 là thể tích phần chứa điểm C. 0,5 Ta có V1 = (3/8 – 1/72 – 1/48)V = (49/144)V nên V2 = (95/144)V. Do đó V1/V2 = 49/95. 2. (2,0 điểm) A D B H M N C Theo giả thiết DACD và DBCD có tất cả các cạnh không lớn hơn 1. Đặt CD 0,25 = a ( 0 < a ᄀ 1 ). Gọi AM, BN lần lượt là chiều cao của ACD và BCD . a2 a2 Ta có AM 1 ; BN 1 . 4 4 a2 0,75 Gọi AH là chiều cao của tứ diện, ta có AH AM 1 . 4 1 1 a a2 Thể tích của tứ diện ABCD: V .S BCD . AH .BN .CD. AH (1 ) 3 6 6 4 Xét f ( a) a (4 a 2 ) trên (0, 1]. Ta có f(a) liên tục trên (0, 1]. 2 f ' (a ) = 4 - 3a 2 , f ' ( a) = 0 ᄀ a = ᄀ ᄀ ( 0;1] . 3 a 0 1 + f'(a) 0,5 3 f(a) 0 Vậy m( 0,1ax ] f ( a) = f (1) = 3 . 1 Suy ra maxV = khi DACD và BCD là hai tam giác đều cạnh bằng 1, hai 8 mặt phẳng (ACD) và (BCD) vuông góc với nhau. Khi đó tính được 0,5 6 AB = >1. 2 5 a2 2ab 2 2ab 2 2 = a − ( ab ) (Theo BĐT Cô si) 2/3 Ta có = a − a − (2,0 a + 2b 2 a + 2b 2 3 3 ab 4 3 0,5 điểm b 2 2 c 2 2 b − ( bc ) , c − ( ca ) 2/3 2/3 Tương tự: ) b + 2c 2 3 c + 2a 2 3 a2 b2 c2 2 0,5 ( ab ) + ( bc ) + ( ca ) � 2/3 2/3 2/3 Khi đó + + a+b+c− � a + 2b 2 b + 2c 2 c + 2a 2 3 � �
- 2 ( ab ) + ( bc ) + ( ca ) � 2/3 2/3 2/3 = 3− � (1) 3 � � Ta đi chứng minh ( ab ) + ( bc ) + ( ca ) �� 2/3 2/3 2/ 3 3 3 a 2b 2 + 3 b 2c 2 + 3 c 2 a 2 �3 (2) Thật vậy theo Cô si ta có a + b + ab 3 3 a 2b 2 Thật vậy theo Cô si ta có c + b + bc 3 3 c 2b 2 Thật vậy theo Cô si ta có a + c + ac 3 3 a 2c 2 0,5 � 2 ( a + b + c ) + ab + bc + ca �3 ( 3 ) a 2b 2 + 3 b 2 c 2 + 3 c 2 a 2 Mặt khác ta có: ( a − b) + ( b − c ) + ( c − a ) �� 2 2 2 0 a 2 + b 2 + c 2 �ab + bc + ca 1 � ( a + b + c ) �3 ( ab + bc + ca ) � ab + bc + ca � ( a + b + c ) = 3 2 2 3 0,5 Khi đó ta có: 3 ( 3 ab + bc + ca 2 2 3 2 2 3 2 2 ) 2.3 + 3 = 9 � 3 a 2b 2 + 3 b 2c 2 + 3 c 2 a 2 �3 . Vậy (2) đúng, thay vào (1) ĐPCM. Dấu đẳng thức xảy ra khi a = b = c = 1. Hết
- SỞ GD&ĐT NINH BÌNH ĐỀ THI CHỌN HỌC VIÊN GIỎI LỚP 12 BT THPT Năm học 2012 – 2013 ĐỀ THI CHÍNH THỨC MÔN: TOÁN Ngày thi 18/12/2012 (Thời gian làm bài 180 phút, không kể thời gian giao đề) Đề thi gồm 05 câu, trong 01 trang Câu 1 (5,0 điểm). Cho hàm số y = x3 – 3x2 + m2x + m, m là tham số (1). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số (1) luôn đồng biến trên ᄀ . Câu 2 (5,0 điểm). Giải phương trình: 1. cosx + cos2x + cos3x + cos4x = 0. 2. 3 − x + x + 2 = 3 . Câu 3 (4,0 điểm). 1. Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể tạo ra bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau trong đó các chữ số 1 và 2 luôn đứng cạnh nhau? 2. Cho đường tròn (I) có phương trình x2 + y2 4x + 8y + 15 = 0. Viết phương trình tiếp tuyến với (I) biết tiếp tuyến đi qua điểm A(1 ; 0). Câu 4 (4,0 điểm). Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên SA = SB = SC = SD = a. 1. Tính thể tích khối chóp S.ABCD theo a. 2. Gọi M, N, P theo thứ tự là trung điểm của các cạnh AB, AD và SC. Chứng tỏ rằng mặt phẳng (MNP) chia khối chóp thành 2 phần có thể tích bằng nhau. Câu 5 (2,0 điểm). Giải phương trình 2 x2 8x 6 x2 1 2x 2 .
- HẾT Họ và tên thí sinh :....................................................... Số báo danh ........................................ Họ và tên, chữ ký: Giám thị 1:................................................................................................... Họ và tên, chữ ký: Giám thị 2:...................................................................................................
- SỞ GD&ĐT NINH BÌNH HDC ĐÊ THI H ̀ ỌC VIÊN GIỎI LỚP 12 BTTHPT Năm học: 2012 – 2013 MÔN: TOÁN Ngay thi: 18/12/2012 ̀ (Hương dân châm nay gôm 04 trang) ́ ̃ ́ ̀ ̀ A) Hướng dẫn chung: 1) Học sinh làm đúng đến đâu thì giám khảo chấm đến đó. Học sinh trình bày theo cách khác mà đúng thì giám khảo chấm tương ứng biểu điểm của HDC. 2) Việc chi tiết hóa thang điểm phải đảm bảo không làm sai lệch biểu điểm cua HDC và ̉ phải được thống nhất trong toàn hội đồng chấm thi. 3) Điểm của bài thi không làm tròn. B) Hướng dẫn cụ thể: Câu Đáp án Điểm 1 1) 3 điểm (5 điểm) Khi m = 0 ta có y = x3 − 3x 2 0,5 a) TXĐ: D = ᄀ b) Sự biến thiên: +) Chiều biến thiên: y ' =3 x 2 −6 x =3 x ( x −2) y ' =0 �3x( x −2) =0 �x =0; x =2 0,75 y '
- f(x)=x^33x^2 y x(t)=2 , y(t)=t f(x)=4 O 2 3 x 4 2) 2 điểm + Ta có : y’ = 3x2 – 6x + m2 0,25 + Hàm số luôn đồng biến trên ᄀ ۳∀� y ' 0 x ᄀ 0,5 a>0 3>0 0,5 ∆' 0 9 − 3m 2 0 m ( ; 3 ] [ 3; ) 0,5 Vậy với m ( ; 3 ] [ 3; ) thì hàm số luôn đồng biến trên ᄀ . 0,25 1) 3 điểm 3x x 7x x cosx + cos2x + cos3x + cos4x = 0 2cos cos + 2 cos cos = 0 0,5 2 2 2 2 x 5x 4cos cos cosx = 0 0,5 2 2 x 5x cos = 0; cos = 0; cos x =0 0,5 2 2 x = π + k 2π, k ᄀ π 2π � x = +k , k �ᄀ 1,25 5 5 π 2 x = + k π, k ᄀ 2 5 điểm π 2π π Vậy PT đa cho có nghi ̃ ệm: x = π + k 2π; x = +k ; x = + k π ( k ᄀ ) 0,25 5 5 2 2) 2 điểm Đặt U = 3 x , V = x 2 (Điều kiện U 0; V 0) ta có hệ: 0,5 U V 3 0,25 U2 V2 5 U =1 U =2 Giải hệ ta có : ̣ hoăc 0,5 V =2 V =1 U 1 U 2 x 2 ; x 1 0,5 V 2 V 1 Vậy PT đa cho có nghi ̃ ệm là x = 2 ; x = 1 0,25 3 1) 2 điểm 4 điểm Gọi số được lập là: a1a2 a3 a4 a5 0,25
- Xét trường hợp 2 chữ số 1, 2 nằm ở vị trí: a1a2 0,25 Trong trường hợp này có: 2.A 35 = 120 số thỏa mãn ĐK đề bài. 0,5 Tương tự với các trường hợp 2 chữ sô 1, 2 n ́ ằm ở các vị trí: a2 a3 , a3a 4 , a4 a5 ta nhận được số các số thỏa mãn ĐK là: 4.120 = 480 1,0 (số). 2) 2 điểm Đường tròn (I) có tâm là K(2; 4), bán kính R = 5 0,25 Đường thẳng đi qua điểm A(1; 0) có PT dạng: 0,25 a(x + 1) + by = 0 ax + by + a = 0 (a 2 + b 2 0) Đê ̉ là tiếp tuyến của đường tròn (I) thi:̀ 2a 4b a 0,5 d(K, ) = R 5 4a 2 24ab 11b 2 0 (*) 2 2 a b Ta thây nêu ̀ ừ (*) suy ra a = 0, không TMĐK. ́ ́ b = 0 thi t a 1 11 0,5 Nêu ̣ t = , từ phương trình (*) ta có: t = hoặc t = . ́ b 0 , đăt b 2 2 Từ đo tim đ ́ ̀ ược PT tiếp tuyến là: x + 2y + 1 = 0 hoặc 11x + 2y + 11 = 0,5 0. 4 1) 2 điểm 4 điểm S P Q C B E 0,25 R H M A D N F (Ve hinh đung y a) ̃ ̀ ́ ́ ̣ H la giao điêm cua Goi ̀ ̉ ̉ AC va ̀BD. Vi ̀S.ABCD la chop đêu nên ̀ ́ ̀ SH la ̀ 0,25 đương cao cua hinh chop. ̀ ̉ ̀ ́ Áp dụng định lý Pitago trong tam giác vuông HSA: 2 2 2AC 2 a2 2 a 2 0,5 SH = SA AH = SA = SH = 4 2 2 SABCD = a 2 0,25 1 a 1 3 2 Áp dụng công thức V = Bh ta co ́V = SH.SABCD = . 0,75 3 3 6 2) 2 điểm Kéo dài MN cắt CB, CD lân l̀ ượt tại E va ̀F. PE cắt SB tại Q, PF cắt 0,5 SD tại R. Thiêt diên cua hinh chop căt b ́ ̣ ̉ ̀ ́ ́ ởi (MNP) la ngu giac ̀ ̃ ́ MNRPQ. Gọi phần thể tích không chứa đỉnh S là V1 , phần thể tich còn l ́ ại là V2 . 0,25
- V1 1 Ta phải chứng minh V1 = V2 hay = , V la thê tich ̀ ̉ ́ S.ABCD. V 2 Ta có: V1 = VP.CEF − (VR.DFN + VQ.BME ) = VP.CEF − 2VR.DFN (vì VR.DFN = VQ .BME ). 0,5 Ta tính V1 ,VP.CEF ,VR. DFN theo V. 1 1 9 1 9 VP.CEF = SCEF .PK = . S ABCD . SH = V (PK là đường cao của hình 3 3 8 2 16 0,25 chóp P.CEF). 1 1 1 1 1 VR. DFN = S DFN .RJ = . S ABCD . SH = V (RJ là đường cao của hình 3 3 8 4 32 0,25 chóp R.DFN). 9 1 1 Từ đó suy ra: V1 = VP.CEF − 2VR.DFN = V− V= V 16 16 2 0,25 Suy ra điều phải chứng minh. 2 x2 + 8x + 6 0 x �( −�; −3] �[−1; +�) ĐK: �x − 1 ��� 2 0 �x ( −�; −1] �[1; +��� ) ) { −1} x [1; +�� 0,5 �2 x + 2 �� 0 �x [−1; +�) ̉ + TH1: x = 1 thoa man PT. V ̃ ậy x = 1 la môt nghiêm cua PT ̀ ̣ ̣ ̉ 0,25 + TH2: Với x 1 ta xét phương trình: 2x2 8x 6 x2 1 2x 2 0,25 5 ( x 1)(2 x 6) ( x 1)( x 1) 2. ( x 1)( x 1) 2 điểm 2x 6 x 1 2 x 1 2x + 6 + x – 1 + 2. ( 2 x 6).( x 1) = 4(x + 1) 0,25 3x + 5 + 2 (2 x 6)( x 1) = 4x + 4 2 (2 x 6)( x 1) = x 1 2 (2 x 6)( x 1) = ( x 1)( x 1) 0,25 Suy ra x – 1 = 0 x = 1 −25 Hoặc: 2 2 x 6 x 1 8x + 24 = x 1 x = ̣ (loai) 0,25 7 Vậy phương trình đa cho có 2 nghi ̃ ệm: x = 1 và x = 1. 0,25 Hết
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi chọn Học sinh giỏi cấp Tỉnh năm 2013 - 2014 môn Toán lớp 11 - Sở Giáo dục Đào tạo Nghệ An
1 p | 600 | 46
-
Đề thi chọn Học sinh giỏi cấp Tỉnh THPT năm hoc 2011 - 2012 môn Toán lớp 10 - Sở GD - ĐT Hà Tĩnh
1 p | 268 | 23
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 8 năm học 2013 - 2014
4 p | 241 | 23
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 6 năm học 2013 - 2014
5 p | 426 | 21
-
Đề thi chọn học sinh giỏi cấp trường môn Hóa khối 9 năm học 2013 - 2014
5 p | 354 | 17
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 6,7 năm học 2013 - 2014 (Chính)
4 p | 370 | 16
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 8,9 năm học 2013 - 2014 (Chính)
4 p | 202 | 15
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 7 năm học 2013 - 2014
4 p | 207 | 11
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 8,9 năm học 2013 - 2014 (Phụ)
4 p | 165 | 9
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 6,7 năm học 2013 - 2014 (Phụ)
4 p | 131 | 5
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở GD&ĐT Vĩnh Long
2 p | 24 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2021-2022 có đáp án - Sở GD&ĐT Bắc Ninh
30 p | 24 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2021-2022 - Sở GD&ĐT Lạng Sơn
6 p | 31 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 (Vòng 1) - Sở GD&ĐT Long An
2 p | 22 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở Giáo dục, Khoa học và Công nghệ
2 p | 28 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở GD&ĐT Thái Nguyên
1 p | 23 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán (Chuyên) lớp 12 năm 2021-2022 có đáp án - Sở GD&ĐT Lạng Sơn
6 p | 24 | 3
-
Đề thi chọn học sinh giỏi môn các môn tự nhiên lớp 12 năm học 2021-2022 - Sở GD&ĐT Hà Nội
9 p | 23 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn