Đề thi chọn học sinh giỏi môn Toán lớp 12 năm học 2019-2020 - Trường THPT Ngô Gia Tự
lượt xem 2
download
Đề thi chọn học sinh giỏi môn Toán lớp 12 năm học 2019-2020 - Trường THPT Ngô Gia Tự giúp các em học sinh nắm được cấu trúc đề thi, tự rèn luyện củng cố kiến thức của bản thân. Đồng thời còn là tài liệu tham khảo dành cho giáo viên trong quá trình giảng dạy và biên soạn đề thi.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi chọn học sinh giỏi môn Toán lớp 12 năm học 2019-2020 - Trường THPT Ngô Gia Tự
- SỞ GIÁO DỤC PHÚ YÊN KỲ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2019 – 2020 TRƯỜNG THPT NGÔ GIA TỰ U U MÔN: TOÁN (Đề thi có 01 trang) Thời gian làm bài: 150 phút (không kể thời gian phát đề) Câu 1. (2,0 điểm) Giải phương trình x3 = +1 2 3 2x −1 . Câu 2. (2, 0 điểm) Cho tam giác ABC vuông tại A. Trên hai cạnh AB và AC lần lượt lấy hai điểm B′ và C ′ sao cho AB. AB′ = AC. AC ′. Gọi M là trung điểm của BC. Chứng minh rằng AM ⊥ B′C ′. Câu 3. (3,0 điểm) Cho phương trình cos 2 x + sin x + m − 3 =0. a. Tìm tất cả các giá trị của tham số m để phương trình có 3 nghiệm phân biệt. b. Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt thuộc khoảng (0; π ). Câu 4. (4,0 điểm) Cho f ( x)= mx 2 + 4(m − 1) x + m − 1 ( m là tham số). a. Tìm tất cả các giá trị của tham số m để f ( x) > 0 với mọi x ∈ . b. Tìm tất cả các giá trị của tham số m để f ( x) < 0 với mọi x ∈ ( 0; 2 ) . x + 1 + y + 2 =m Câu 5. (4,0 điểm) Cho hệ phương trình ( m là tham số). x + y = 3m a. Giải hệ phương trình khi m = 4. b. Tìm tất cả các giá trị của tham số m để hệ phương trình có nghiệm. Câu 6. (2,0 điểm) Cho tam giác ABC. Gọi O là điểm tùy ý nằm trong tam giác. Kẻ OM , ON và BC AC AB 2 p OP lần lượt vuông góc với các cạnh BC , AC và AB. Chứng minh + + ≥ trong đó OM ON OP r p là nửa chu vi của tam giác ABC và r là bán kính của đường tròn nội tiếp của tam giác ABC. Câu 7. (3,0 điểm) Cho tam giác ABC vuông tại B. Kéo dài AC về phía C một đoạn CD = AB = 1; = 300. Tính độ dài đoạn AC. CBD ---------- HẾT ---------- Tải tài liệu miễn phí https://vndoc.com
- SỞ GIÁO DỤC PHÚ YÊN KỲ THI CHỌN HỌC SINH GIỎI NĂM 2019 – 2020 TRƯỜNG THPT NGÔ GIA TỰ Môn Toán – Thời gian: 150 phút Câu Đáp án Điểm Câu1 Đặt:=y 3 2 x − 1. (2,0 điểm) 1,0 = x + 1 2 y = x + 1 2 y = x + 1 2 y 3 3 3 Ta có: 3 ⇔ 3 ⇔ y + 1= 2 x x − y = 2( y − x) ( x − y )( x − xy + y + 2)= 0 3 2 2 2 0,25 Do x 2 − xy + y 2 + 2 = x − + y 3y2 + 2 > 0 ∀x, y 2 4 x3 + 1 =2 y 0,5 Nên ta có hệ: ⇒ x3 + 1= 2 x ⇔ ( x − 1)( x 2 + x − 1)= 0 x = y x = 1 −1 + 5 ⇔ x = 2 0,25 x = −1 − 5 2 Câu 2 Vì M là trung điểm của BC nên B (2,0 điểm) 1 = AM 2 ( AB + AC ) B' M 0,5 C' A C 1 Ta có: AM .B′C ′ = 2 ( )( ) AB + AC AC ′ − AB′ = AC. AC ′ − AB. AB′ = 0 1,5 Vậy: AM ⊥ B′C ′ Câu 3 a. (1,5 điểm) cos 2 x + sin x + m − 3 = 0 ⇔ 2sin 2 x − sin x = m − 2 0,25 (3,0 điểm) Đặt: = t sin x, t ∈ [ −1;1] Phương trình trở thành 2t 2 − t = m − 2 0,5 y 2t 2 − t với t ∈ [ −1;1] Xét hàm số = 0,75 Để phương trình có 3 nghiệm phân biệt ⇔ m − 2 =1 ⇔ m = 3 Tải tài liệu miễn phí https://vndoc.com
- b. (1,5 điểm) x ∈ ( 0; π ) ⇒ t ∈ ( 0;1] y 2t 2 − t trên nửa khoảng ( 0;1] 1,0 Xét hàm số = 1 15 Để phương trình có 4 nghiệm phân biệt ⇔ − < m − 2 < 0 ⇔ 0 ⇔ x < − (loại) 4 + Khi m ≠ 0 để 1,0 m > 0 m > 0 4 f ( x) > 0∀x ∈ ⇔ ⇔ ⇔1< m < ∆′ < 0 (m − 1)(3m − 4) < 0 3 b. (2,5 điểm) 1 0,5 + Khi m = 0 thì f ( x) < 0 ⇔ −4 x − 1 < 0 ⇔ x > − (thỏa mãn) 4 m < 0 m < 0 + ⇔ ⇒ VN ∆′ < 0 (m − 1)(3m − 4) < 0 0,5 + Khi m > 0 đề f ( x) < 0∀x ∈ (0; 2) thì f ( x) = 0 có hai nghiệm x1 , x2 thỏa x ≤ 0 < x2 (1) x1 ≤ 0 < 2 ≤ x2 ⇔ 1 0,5 x1 < 2 ≤ x2 (2) m −1 0,5 (1) ⇔ ≤ 0 ⇔ 0 < m ≤1 m 13 0,5 (2) ⇔ ( x1 − 2)( x2 − 2) ≤ 0 ⇔ x1 x2 − 2( x1 + x2 ) + 4 ≤ 0 ⇔ 0 < m ≤ 10 13 Vậy: 0 ≤ m ≤ . 10 Câu 5 a. (1,5 điểm) (4,0 điểm) x + 1 + y + 2 =4 = y 12 − x 1,0 Khi m = 4 ta có ⇔ x + y = 12 x + 1 + 14 − x =4 ( −1 ≤ x ≤ 14; −2 ≤ y ≤ 13) Tải tài liệu miễn phí https://vndoc.com
- 13 + 4 14 x = 2 ⇒ 2 ( x + 1)(14 − x) = 1 ⇔ −4 x 2 + 52 x + 55 = 0 ⇔ 13 − 4 14 x = 2 11 − 4 14 0,5 y = 2 11 + 4 14 y = 2 13 + 4 14 11 − 4 14 13 − 4 14 11 + 4 14 Vậy: hệ có hai nghiệm ; và ; 2 2 2 2 b. (2,5 điểm) a + b = m 2 Đặt: = a x + 1 và = b y + 2. Hệ trở thành a + b 2 = 3m + 3 a ≥ 0, b ≥ 0 0,5 Để hệ có nghiệm khi và chỉ khi đường thẳng a + b =m có điểm chung với 1,0 đường tròn a + b = 3m + 3 trong đó a ≥ 0 và b ≥ 0 2 2 m 2 − 6m − 6 ≤ 0 3 + 21 3m + 3 ≤ m ≤ 6m + 6 ⇔ m 2 − 3m − 3 ≥ 0 ⇔ ≤ m ≤ 3 + 15 1,0 m ≥ 0 2 3 + 21 Vậy: ≤ m ≤ 3 + 15 2 Câu 6 Theo BĐT Bunhiacopski, ta có (2,0 điểm) BC AC AB 2 . BC.OM + . AC.ON + . AB.OP OM ON OP BC AC AB 1,0 ≤ + + ( BC.OM + AC.ON + AB.OP ) OM ON OP BC AC AB ⇔ ( BC + AC + AB) 2 ≤ + + ( BC.OM + AC.ON + AB.OP ) OM ON OP BC AC AB BC AC AB 2 p ⇔ + + .2 S ABC ≥ 4 p ⇔ 2 + + ≥ (do S ABC = pr ) OM ON OP OM ON OP r 0,5 Tải tài liệu miễn phí https://vndoc.com
- Dấu bằng xảy ra OM = ON + OP ⇔ O là tâm đường tròn nội tiếp tam giác ABC 0,5 Câu 7 Qua D kẻ đường thẳng vuông góc với E CD cắt BC tại E (3,0 điểm) Tứ giác ABDE nội tiếp 1,0 ∠DBC = ∠DAE D C B A Đặt AC = x > 1 ⇒ AD = x + 1 π x +1 0,5 = AD.tan= DE = ; BC x2 −1 6 3 CD BC ∆CDE ∆CBA ⇒ = ⇔ 3 =( x + 1) x 2 − 1 ED BA 1,0 ⇔ x( x 3 − 2) + 2( x 3 − 2) = 0 ⇔ ( x3 − 2)( x + 2) = 0 ⇔ x = 3 2 Vậy: AC = 3 2. 0,5 Tải tài liệu miễn phí https://vndoc.com
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi chọn Học sinh giỏi cấp Tỉnh năm 2013 - 2014 môn Toán lớp 11 - Sở Giáo dục Đào tạo Nghệ An
1 p | 592 | 46
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 8 năm học 2013 - 2014
4 p | 240 | 23
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 6 năm học 2013 - 2014
5 p | 426 | 21
-
Đề thi chọn học sinh giỏi cấp trường môn Hóa khối 9 năm học 2013 - 2014
5 p | 351 | 17
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 6,7 năm học 2013 - 2014 (Chính)
4 p | 370 | 16
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 8,9 năm học 2013 - 2014 (Chính)
4 p | 202 | 15
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 7 năm học 2013 - 2014
4 p | 206 | 11
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 8,9 năm học 2013 - 2014 (Phụ)
4 p | 162 | 9
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 6,7 năm học 2013 - 2014 (Phụ)
4 p | 129 | 5
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 (Vòng 1) - Sở GD&ĐT Long An
2 p | 22 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở Giáo dục, Khoa học và Công nghệ
2 p | 21 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở GD&ĐT Thái Nguyên
1 p | 23 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán (Chuyên) lớp 12 năm 2021-2022 có đáp án - Sở GD&ĐT Lạng Sơn
6 p | 14 | 3
-
Đề thi chọn học sinh giỏi môn Toán THPT năm 2023-2024 - Trường THPT Nguyễn Huệ, Quảng Nam
1 p | 10 | 1
-
Đề thi chọn học sinh giỏi môn Địa lí THPT năm 2023-2024 - Trường THPT Nguyễn Huệ, Quảng Nam
2 p | 11 | 1
-
Đề thi chọn học sinh giỏi môn Ngữ văn THPT năm 2023-2024 - Trường THPT Nguyễn Huệ, Quảng Nam
1 p | 11 | 1
-
Đề thi chọn học sinh giỏi môn Sinh học THPT năm 2023-2024 - Trường THPT Nguyễn Huệ, Quảng Nam
7 p | 2 | 1
-
Đề thi chọn học sinh giỏi môn Vật lý THPT năm 2023-2024 - Trường THPT Nguyễn Huệ, Quảng Nam
2 p | 4 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn