intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi chọn học sinh giỏi năm học 2015-2016 môn Toán 10 - Trường THPT Tam Quan

Chia sẻ: Cau Le | Ngày: | Loại File: PDF | Số trang:4

78
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Kì thi chọn học sinh giỏi là kì thi quan trọng đối với mỗi học sinh, dưới đây là "Đề thi chọn học sinh giỏi năm học 2015-2016 môn Toán 10 - Trường THPT Tam Quan" giúp các em kiểm tra lại đánh giá kiến thức của mình và có thêm thời gian chuẩn bị ôn tập cho kì thi sắp tới được tốt hơn.

Chủ đề:
Lưu

Nội dung Text: Đề thi chọn học sinh giỏi năm học 2015-2016 môn Toán 10 - Trường THPT Tam Quan

  1. SỞ GD & ĐT BÌNH ĐỊNH KỲ THI CHỌN HỌC SINH GIỎI LỚP 10 TRƯỜNG THPT TAM QUAN NĂM HỌC 2015- 2016 Môn thi: TOÁN ĐỀ CHÍNH THỨC Thời gian: 150 phút (không kể thời gian giao đề) Câu I: (1,5 điểm). So sánh các số thực sau ( Không dùng máy tính gần đúng). 3 2 và 2 3 1 x2  x  2 2x  4 Câu II: (3,0 điểm). Cho A   2  x  2 x  7 x  10 x  5 a) Rút gọn A. b) Tìm x nguyên để A nguyên. Câu III: (5,0 điểm). 1) Mỗi học sinh lớp 10A1 đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn thể thao này. Hỏi lớp 10A1 có bao nhiêu học sinh. 2) Cho các nữa khoảng A  (a; a  1], B  [b; b  2). Đặt C  A  B. Với điều kiện nào của các số thực a và b thì C là một đoạn? Tính độ dài của đoạn C khi đó . 3) Tìm một tính chất đặc trưng cho các phần tử của mỗi tập hợp sau: 1 1 1 1 1  2 3 4 5 6  a) A   , , , ,  b) B   , , , ,   2 6 12 20 30   3 8 15 24 35  Câu IV: (3,0 điểm). 1) Tìm m để phương trình x 2  1  m 4  m 2  1 có bốn nghiệm phân biệt.  x4  3  4 y  2) Gi¶i hÖ ph­¬ng tr×nh:   y4  3  4x  Câu V: (4,0 điểm). 1) Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm của AM và K là điểm trên 1 cạnh AC sao cho AK  AC . Chứng minh ba điểm B, I ,K thẳng hàng. 3 2) Cho tứ giác ABCD. Các điểm M, N, P và Q lần lượt là trung điểm của AB, BC, CD và DA. Chứng minh hai tam giác ANP và CMQ có cùng trọng tâm. Câu VI: (3,5 điểm). Cho đường tròn tâm (O; R) đường kính AB và CD vuông góc với nhau. Trong đoạn AB lấy điểm M khác 0. Đường thẳng CM cắt đường tròn (O) tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến với đường tròn (O) tại N ở điểm P. Chứng minh rằng: a) Các điểm O, M, N, P cùng nằm trên một đường tròn. b) Tứ giác CMPO là hình bình hành. c) CM.CN = 2R2 ---HẾT--- Họ và tên thí sinh: ........................................................ Số báo danh: ...................................
  2. CÂU NỘI DUNG ĐÁP ÁN     2 2 Giả sử 3 2 > 2 3  3 2  2 3 I. (1,5đ)    2 3 2 2 3 2 2 3 3 2  18  12 (BĐT đúng) a) (1,5 đ) x2-7x+10=(x-5)(x-2). Điều kiện để A có nghĩa là x ≠5và x ≠2 1 x2  x  2 2x  4 1 x2  x  2 2x  4 A  2      x  2 x  7 x  10 x  5 x  2 ( x  5)( x  2) x  5 x  5  x 2  x  2  (2 x  4)( x  2)  ( x  5)( x  2) II (3,0 đ)   x  8 x  15  ( x  5)( x  3)   x  3 2 ( x  5)( x  2) ( x  5)( x  2) x2 ( x  2)  1 1 b) (1,5 đ) A   1  , với x nguyên, A nguyên khi và chỉ khi x2 x2 1 nguyên, khi đó x-2=1 hoặc x-2 =-1 nghĩa là x=3, hoặc x=1. x2 1)(2 đ) Gọi A là tập hợp các học sinh lớp 10A1 chơi bóng đá B là tập hợp các học sinh lớp 10A1 chơi bóng chuyền. Vì mỗi bạn của lớp 10A1 đều chơi bong đá hoặc bóng chuyền nên A  B là tập các học sinh của lớp. Để đếm số phần tử của A  B . Số phần tử của A là 25 Hs và của B là 20 hs. Nhưng khi đó các phần tử thuộc A  B được đếm hai lần( 10 lần). Vậy số phần tử của A  B là 25+20 -10 = 35. Lớp 10A1 có 35 hs. III 2) (2 đ) C  [b; b  2)  (a; a  1] là một đoạn  b  a  b  2  a  1 (5,0đ)  b  1  a  b  2. (*) Khi đó, C  [b; b  2)  (a; a  1]  [b; a  1] là đoạn có độ dài a  b  1  1  3) (1 đ) a) A   / n  N ,1  n  5  n(n  1)   n  b) A   / n  N , 2  n  6  n  1) 2  IV 1) (1,5 đ) Ta có: m  m  1  0 4 2 (3,0đ)  x 2  m4  m2  2 (1) ) PT  2 2 4 2 2  x  m  m  m (1  m ) (2) (1) có 2 nghiệm phân biệt với mọi m vì m4  m2  2  0 (2) có 2 nghiệm phân biệt  m  0 và 1  m 2  0  m  (1; 1) \{0} PT có 4 nghiệm phân biệt  m  (1;1) \{0} và m4  m2  2  m2  m4  m  (1;1) \{0} và m 4  m 2  1  0  m  (1;1) \{0} , kết luận
  3. x  3 2) (1,5 đ) . §iÒu kiÖn ®Ó hÖ cã nghiÖm lµ:  4 (*)  y  3 4  x4  3  4 y  x4  3  4 y (a) Víi ®iÒu kiÖn (*), ta cã:  4  4  y  3  4x  x  y  4( x  y )  0 (b) 4   (b)   x  y   x  y  x 2  y 2  4   0  x  y  0  x  y   (v× x, y  3 4  0 nªn  x  y  x 2  y 2  4  0 ). Thay vµo (a): x 4  3  4 y  x 4  4 x  3  0  x 4  1  4  x  1  0       x  1 x 3  x 2  x  3  0   x  1 x 2  2 x  3  0  x  1 2 v× x 2  2 x  3   x  1  2  0 . 2 So víi ®iÒu kiÖn (*), ta cã: x  y  1  3 4 . x 1 VËy hÖ ph­¬ng tr×nh cã nghiÖm duy nhÊt :  y 1     1) (2,0 đ) Đặt u  BA ;v  BC .Ta có     1   1   2  1  BK  BA  AK  u  AC  u  ( BC  BA)  u  v (1) 3 3 3 3  1   1  1  BI  ( BA  BM )  u  v (2) 2 2 4          4  Từ (1) và (2) suy ra 2u  v  3BK , 2u  v  4 BI vậy 3BK  4 BI hay BK  BI V 3 (4,0đ) Do đó ba điểm B, I, K thẳng hàng     2) (2,0 đ) Gọi G là trọng tâm tam giác ANP .Khi đó GA  GN  GP  0 Ta có          GC  GM  GQ  GA  AC  GN  NM  GP  PQ           GA  GN  GP  AC  ( NM  PQ )  AC  CA  0     Vậy GC  GM  GQ  0 Suy ra G là trọng tâm tam giác CMQ C M O VI A B (3,5đ) F E N P D
  4. a) (1,5 đ) * Tam giác OMP vuông tại M nên O, M, P thuộc đường tròn đường kính OP. * Tam giác ONP vuông tại N nên O, N, P thuộc đường tròn đường kính OP. * Vậy O, M, N, P cùng thuộc đường tròn đường kính OP. b) (1,0 đ) MP//OC (vì cùng vuông góc với AB)   NCD NMP  (hai góc đồng vị)   OCN ONC  (hai góc đáy của tam giác cân ONC)   NOP NMP  (hai góc nội tiếp cùng chắn cung NP) Suy ra MNO  NOP  ; do đó, OP//MC. Vậy tứ giác MCOP là hình bình hành. c) (1,0 đ) CND  COM ( g .g ) OC CM Nên  hay CM.CN = OC.CD = 2R2 CN CD
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0