UBND HUYỆN THANH TRÌ<br />
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO<br />
<br />
ĐỀ KIỂM TRA HỌC KÌ II NĂM HỌC 2017- 2018<br />
<br />
Môn: Toán 8<br />
Thời gian: 90 phút<br />
Ngày kiểm tra: 24 tháng 4 năm 2018<br />
<br />
I. Trắc nghiệm(2điểm): Chọn chữ cái trước đáp án đúng<br />
1) Chọn khẳng định đúng:<br />
A) x2 = 3x x(x-3) = 0<br />
<br />
B) x2 = 9 x=3<br />
C) (x-1)2- 25 =0 x= 6<br />
3x 2 2 x 11<br />
3<br />
2) Điều kiện xác định của phương trình :<br />
là:<br />
2<br />
<br />
x2<br />
x 4 2 x<br />
2<br />
11<br />
A) x≠ ; x≠<br />
B) x≠2<br />
C) x>0<br />
3<br />
2<br />
<br />
D) x2 = -36 x = -6<br />
<br />
D) x≠2 và x≠-2<br />
<br />
3) x= -2 là một nghiệm của bất phương trình:<br />
A) 3x+17< 5<br />
<br />
B) -2x+1 < -1<br />
<br />
C)<br />
<br />
1<br />
x+5 > 3,5<br />
2<br />
<br />
D) 1 - 2x < -3<br />
<br />
4) Phương trình 2 x 5 3 x có nghiệm là :<br />
A) {-8;<br />
<br />
2<br />
}<br />
3<br />
<br />
2<br />
3<br />
<br />
B) {-8; }<br />
<br />
C) {-2;<br />
<br />
8<br />
}<br />
3<br />
<br />
8<br />
3<br />
<br />
D){-2; }<br />
<br />
5) Cho ∆ABC và MN//BC với M nằm giữa A và B, N nằm giữa A và C. Biết AN=2cm, AB=3AM<br />
.Kết quả nào sau đây đúng:<br />
A) AC = 6cm<br />
B) CN=3cm<br />
C)AC = 9cm<br />
D) CN = 1,5 cm<br />
6) Cho ∆ABC đồng dạng với ∆A’B’C’ theo tỉ số<br />
<br />
2<br />
và chu vi của ∆A’B’C’ là 60cm. Khi đó chu vi<br />
5<br />
<br />
∆ABC là:<br />
A) 20cm<br />
B) 24cm<br />
C) 25cm<br />
D) 30cm<br />
7) Cho AD là phân giác của ∆ABC (DBC) có AB=14cm, AC=21cm, BD = 8cm. Độ dài cạnh BC<br />
là: A) 15cm<br />
B) 18cm<br />
C) 20 cm<br />
D) 22 cm<br />
8) Một hình hộp chữ nhật có chiều rộng, chiều dài, diện tích xung quanh lần lượt bằng 4cm; 5cm và<br />
54 cm2. Chiều cao của hình hộp chữ nhật là :<br />
A) 5 cm<br />
B) 6cm<br />
C) 4 cm<br />
D) 3 cm<br />
II.Tự luận (8điểm)<br />
Bài 1(1.0 điểm): Cho các biểu thức A=<br />
a) Tìm x để A =<br />
<br />
3<br />
2<br />
<br />
2x 1<br />
2<br />
và B = 2<br />
( với x ≠ ±3)<br />
x3<br />
x 9<br />
A<br />
x2 5<br />
b) Tìm x để<br />
B<br />
<br />
Bài 2(1.0 điểm):Giải bất phương trình và biểu diễn tập nghiệm trên trục số.<br />
x 1 2 x 3x 3<br />
<br />
<br />
2<br />
3<br />
4<br />
<br />
Bài 3(2.0 điểm): Giải bài toán sau bằng cách lập phương trình:<br />
Lúc 6 giờ, ô tô thứ nhất khởi hành từ A. Đến 7giờ 30 phút ô tô thứ hai cũng khởi hành từ A đuổi theo<br />
và kịp gặp ô tô thứ nhất lúc 10giờ30 phút. Biết vận tốc ô tô thứ hai lớn hơn vận tốc ô tô thứ nhất là<br />
20km/h. Tính vận tốc mỗi ô tô ?<br />
Bài 4(3.5 điểm): Cho ABC vuông tại A, đường cao AH. Kẻ đường phân giác AD của CHA và<br />
đường phân giác BK của ABC (DBC; KAC). BK cắt lần lượt AH và AD tại E và F.<br />
a) Chứng minh: AHB ∽ CHA.<br />
b) Chứng minh: AEF ∽ BEH .<br />
c) Chứng minh: KD // AH.<br />
<br />
d) Chứng minh:<br />
<br />
EH KD<br />
<br />
AB BC<br />
<br />
Bài 5(0.5 điểm) Tìm cặp số nguyên (x; y) thỏa mãn phương trình: x3 + 3x = x2y + 2y + 5<br />
<br />
HƯỚNG DẪN GIẢI:<br />
I. Trắc nghiệm(2điểm):<br />
Đáp án:<br />
1-A<br />
2-D<br />
II.Tự luận (8điểm)<br />
Bài 1(1.0 điểm):<br />
3<br />
2<br />
<br />
a) A <br />
<br />
3-C<br />
<br />
4-C<br />
<br />
5-A<br />
<br />
6-B<br />
<br />
7-C<br />
<br />
2x 1 3<br />
4x 2 3x 9 x 11(tmdk )<br />
x3 2<br />
<br />
b)<br />
<br />
2x 1 ( x 3) x 2 5<br />
A<br />
2x 1<br />
2<br />
2x 1 x 2 9<br />
x2 5 <br />
: 2<br />
x2 5 <br />
.<br />
x2 5 <br />
B<br />
x 3 x 9<br />
x3<br />
2<br />
2<br />
2<br />
2<br />
2x 7x 3 2x 10<br />
<br />
0<br />
2<br />
<br />
Vì 2 > 0<br />
7x 7 0 7x 7 x 1<br />
x 1<br />
x 3<br />
<br />
Kết hợp ĐKXĐ:<br />
<br />
và<br />
<br />
Bài 2. (1 điểm): Giải bất phương trình và biểu diễn tập nghiệm trên trục số<br />
x 1 2 x 3x 3<br />
<br />
<br />
(1)<br />
2<br />
3<br />
4<br />
<br />
Giải: (1) <br />
<br />
6( x 1) 4(2 x) 3(3x 3)<br />
11<br />
<br />
<br />
2x 2 9x 9 11 7x x <br />
12<br />
12<br />
12<br />
7<br />
<br />
Thay vào (**) ta được (x;y) là (-1;-3) hoặc (5;5).<br />
Bài 3(2.0 điểm): Giải bài toán sau bằng cách lập phương trình:<br />
Đổi: 7 giờ 30 phút = 7,5h; 10 giờ 30 phút = 10,5h.<br />
Gọi vận tốc của ô tô thứ nhất là: x (km/h, x 0 ).<br />
Khi đó vận tốc của ô tô thứ hai là: x 20 (km/h).<br />
Thời gian ô tô thứ nhất đi từ A đến chỗ gặp nhau là: 10,5h – 6h = 4,5 (h)<br />
Thời gian ô tô thứ hai đi từ A đến chỗ gặp nhau là: 10,5h – 7,5h = 3 (h)<br />
Quãng đường ô tô thứ nhất đi từ A đến chỗ gặp nhau là: 4,5x (km)<br />
Quãng đường ô tô thứ hai đi từ A đến chỗ gặp nhau là: 3 x 20 (km)<br />
Theo đề bài ta có phương trình: 4,5x 3 x 20 <br />
<br />
8-D<br />
<br />
4,5 x 3x 60<br />
1,5 x 60<br />
x 40<br />
<br />
Vậy vận tốc của ô tô thứ nhất là 40 km/h, vận tốc của ô tô thứ hai là 60 km/h.<br />
Bài 4(3.5 điểm):<br />
B<br />
<br />
1<br />
<br />
H<br />
<br />
2<br />
<br />
D<br />
E<br />
<br />
3<br />
<br />
F<br />
<br />
1<br />
2<br />
<br />
A<br />
<br />
1<br />
<br />
C<br />
<br />
K<br />
<br />
ABH A3 900<br />
ABH HAC<br />
a) Ta có AHB AHC 90 (gt) và <br />
0<br />
HAC A3 90<br />
0<br />
<br />
nên AHB ∽ CHA (g – g).<br />
B1 B2<br />
<br />
B1 B2 A1 A2<br />
b) Ta có A1 A2<br />
<br />
ABH HAC<br />
<br />
Suy ra A2 K1 B1 K1 900 hay KFA 900<br />
Suy ra AD BK<br />
Từ đó AEF ∽ BEH (g – g).<br />
c) Tam giác ABD có BF vừa là phân giác, vừa là đường cao nên tam giác ABD cân tại B hay BA BD<br />
.<br />
BAK BDK (c – g – c) nên BDK BAK 900 hay DK BD<br />
<br />
Mà AH BD<br />
Suy ra DK // AH .<br />
d) Theo câu c) ta có BAK BDK nên AK DK (cạnh tương ứng).<br />
BEH ∽ BKA (g – g) nên<br />
<br />
EH EH BH<br />
<br />
<br />
DK AK BA<br />
<br />
1<br />
<br />
Lại có ABH ∽ CBA (g – g) nên<br />
Từ 1 , 2 suy ra<br />
<br />
AB BH<br />
<br />
BC AB<br />
<br />
2<br />
<br />
EH AB<br />
EH DK<br />
.<br />
<br />
<br />
<br />
DK BC<br />
AB BC<br />
<br />
Bài 5(0.5 điểm) Tìm cặp số nguyên (x;y) thỏa mãn: x3 3x x2 y 2 y 5(*)<br />
Giải: (*) y( x 2 2) x3 3x 5 y <br />
<br />
x3 3x 5<br />
x 5<br />
y x 2<br />
(**)<br />
2<br />
x 2<br />
x 2<br />
<br />
Vì x, y Z nên<br />
( x 5) ( x 2 2) ( x 5)( x 5) ( x 2 2) ( x 2 25) ( x 2 2)<br />
( x 2 2 27) ( x 2 2) 27 ( x 2 2)<br />
<br />
Mà:<br />
x Z , x 2 2 2 27 ( x 2 2)<br />
x2 2 3<br />
x2 1<br />
<br />
<br />
x 1<br />
x 2 2 9 x 2 7( KTM ) <br />
x 5<br />
x 2 2 27<br />
x 2 25<br />
<br />
<br />
<br />