Đề thi khảo sát chất lượng môn Toán lớp 11 năm học 2019-2020 có đáp án – Trường THPT Yên Phong 2
lượt xem 1
download
"Đề thi khảo sát chất lượng môn Toán lớp 11 năm học 2019-2020 có đáp án – Trường THPT Yên Phong 2" với mục tiêu giúp học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, kiến thức để giải các bài tập nhanh nhất.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi khảo sát chất lượng môn Toán lớp 11 năm học 2019-2020 có đáp án – Trường THPT Yên Phong 2
- SỞ GD-ĐT BẮC NINH ĐỀ KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM TRƯỜNG THPT YÊN PHONG SỐ 2 Môn: TOÁN 11 Thời gian làm bài: 90 phút, không kể thời gian phát đề NĂM HỌC 2019-2020 Câu 1. (3,0 điểm) Giải phương trình, hệ phương trình, bất phương trình. 2x − y = 4 . 1) |2x + 3| = 5. 2) 3) x2 + x ≥ 4. x + 4y = −7 Câu 2. (2,0 điểm) Cho hàm số bậc hai y = − x2 + 2x có đồ thị (P ) và hàm số bậc nhất y = x − 2m + 1 (với m là tham số) có đồ thị (d). 1) Vẽ parabol (P ). 2) Tìm m để (d) cắt (P ) tại hai điểm phân biệt M, N sao cho M N = 8. Câu 3. (1,0 điểm) Cho tam giác ABC. Chứng minh rằng sin A = sin B cos C + cos B sin C. Câu 4. (3,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A(1; 2), B(0; 4), C(−3; 0). 1) Tìm tọa độ trung điểm D của đoạn thẳng AC. 2) Viết phương trình đường thẳng BD. 3) Viết phương trình đường tròn tâm A và tiếp xúc với BD. Câu 5. (1,0 điểm) Cho các số thực a, b, c ∈ [1; 5] và thỏa mãn a + b + c = 9. Tìm giá trị nhỏ nhất của biểu thức P = ab + bc + ca. ————— HẾT ————— (Đề thi gồm 01 trang) Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; Số báo danh: . . . . . . . . . . . . . . . . . . . . . . . Thi 12/08/2019
- SỞ GD-ĐT BẮC NINH HƯỚNG DẪN CHẤM TRƯỜNG THPT YÊN PHONG SỐ 2 Trong ba số a, b, c ∈ [1; 5] luôn tồn tại hai số sao cho, hai số này cùng Môn: TOÁN 11 thuộc đoạn [1; 3], hoặc hai số này cùng thuộc đoạn [3; 5]. Do vai trò của (Hướng dẫn chấm gồm 02 trang) 5 a, b, c như nhau nên không mất tính tổng quát ta có thể giả sử hai số 0,5 nói trên là a và b. Suy ra (a − 3)(b − 3) ≥ 0 ⇔ ab ≥ 3(a + b) − 9. Ta có P = ab+bc+ca ≥ 3(a+b)−9+c(a+b) = 3(9−c)−9+c(9−c) = − c2 +6c+18. Câu Ý Nội dung Điểm Hàm số bậc hai f (c) = − c2 + 6c + 18 (biến c) trên đoạn [1; 5] có bảng 1 1 |2x + 3| = 5 ⇔ 2x + 3 = 5 hoặc 2x + 3 = − 5 ⇔ x = 1 hoặc x = − 4. 1,0 biến thiên như sau 2 Hệ phương trình có nghiệm duy nhất (x; y) = (1; −2). 1,0 √ √ −1 − 17 c 1 3 5 3 x2 + x ≥ 4 ⇔ x ≥ −1 + 17 hoặc x ≤ . 1,0 2 2 27 0,5 Đồ thị (P ) của hàm số y = −x + 2x như sau 2 23 % & 23 f (c) y 1 Do đó P ≥ f (c) ≥ 23. Đẳng thức P = 23 xảy ra khi trong ba số a, b, c có một số bằng 1, một số bằng 3, một số bằng 5. Vậy min P = 23. −1 O 2 3 x 1 2 1 1,0 −3 ————— HẾT ————— Xét phương trình hoành độ điểm chung của (P ) và (d) −x2 + 2x = x − 2m + 1 ⇔ x2 − x − 2m + 1 = 0 (1). 2 0,5 Phương trình (1) có hai nghiệm phân biệt x1 ,x2 khi ∆ = 8m − 3 > 0 3 ⇔m> . 8 Lúc này (d) cắt (P ) tại hai điểm M (x1 ; x1 − 2m + 1), N (x2 ; x2 − 2m + 1) √ √ phân biệt, M N = 2|x1 − x2 | = 2∆ = 2(8m − 3). Do đó p p 35 3 0,5 MN = 8 ⇔ 2(8m − 3) = 8 ⇔ m = > . 8 8 3 Ta có sin A = sin (π − (B + C)) = sin(B + C) = sin B cos C + cos B sin C. 1,0 4 1 D(−1; 1). 1,0 2 3x − y + 4 = 0. 1,0 r 5 Bán kính đường tròn R = d (A, BD) = . 3 2 1,0 5 Phương trình đường tròn (x − 1)2 + (y − 2)2 = . 2 Trang 1/2 Trang 2/2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi khảo sát chất lượng đầu năm lớp 6 môn Tiếng Anh năm 2017
22 p | 752 | 63
-
Bộ đề thi khảo sát chất lượng đầu năm môn Ngữ Văn lớp 8 năm 2017
16 p | 1345 | 50
-
Đề thi khảo sát chất lượng đầu năm môn Toán lớp 9 - Trường THCS Kim Đồng năm 2011 - 2012
1 p | 679 | 37
-
Đề thi khảo sát chất lượng HSG Toán 7 đợt 1
1 p | 284 | 36
-
Đề thi khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán 10
1 p | 190 | 29
-
Đề thi khảo sát chất lượng học sinh yếu lớp 1 môn tiếng Việt - Trường tiểu học Thọ Lộc năm 2010
2 p | 239 | 18
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ văn trường THCS Lê Hồng Phong
2 p | 874 | 13
-
Đề thi khảo sát chất lượng Vật lý lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
6 p | 175 | 10
-
Đề thi khảo sát chất lượng Hóa học lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
5 p | 166 | 9
-
Đề thi Khảo sát chất lượng lớp 12: Lần II năm 2011 môn Toán - THPT chuyên ĐH Vinh
0 p | 178 | 8
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 478) - THPT chuyên ĐH Vinh
4 p | 135 | 8
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ Văn trường Tiểu học và Trung học cơ sở Sao Việt
4 p | 260 | 7
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Toán trường THCS Tiên Động
3 p | 320 | 7
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 485) - THPT chuyên ĐH Vinh
5 p | 136 | 6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 209) - THPT chuyên ĐH Vinh
5 p | 163 | 6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 132) - THPT chuyên ĐH Vinh
5 p | 130 | 5
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 357) - THPT chuyên ĐH Vinh
5 p | 138 | 5
-
Đề thi khảo sát chất lượng đầu năm lớp 12 năm học 2017-2018 môn Tiếng Anh trường THPT Nguyễn Viết Xuân
5 p | 132 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn