Đề thi KSCL môn Toán lớp 12 năm 2020-2021 có đáp án (Đợt 1) - Sở GD&ĐT Nghệ An (Mã đề 104)
lượt xem 2
download
Với mong muốn giúp các bạn đạt kết quả cao trong kì thi sắp tới, TaiLieu.VN đã sưu tầm và chọn lọc gửi đến các bạn Đề thi KSCL môn Toán lớp 12 năm 2022-2021 có đáp án (Đợt 1) - Sở GD&ĐT Nghệ An (Mã đề 104) hi vọng đây sẽ là tư liệu ôn tập hiệu quả giúp các em đạt kết quả cao trong kì thi. Mời các bạn cùng tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi KSCL môn Toán lớp 12 năm 2020-2021 có đáp án (Đợt 1) - Sở GD&ĐT Nghệ An (Mã đề 104)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ KHẢO SÁT CHẤT LƯỢNG KẾT HỢP THI THỬ NGHỆ AN LỚP 12 - ĐỢT 1 - NĂM HỌC 2020 - 2021 Bài thi: TOÁN ĐỀ THI CHÍNH THỨC Ngày thi: 30/01/2021 Đề thi gồm có 05 trang Thời gian làm bài: 90 phút (không kể thời gian phát đề) ___________________________ Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MÃ ĐỀ THI: 104 Số báo danh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Câu 1. Cho hình chóp có diện tích mặt đáy là 3a 2 và chiều cao bằng 3a. Thể tích của khối chóp bằng A. a3 B. 9a 3 C. 6a 3 D. 3a 3 . Câu 2. Cho a, b, c là các số dương, a 1 . Đẳng thức nào sau đây đúng? b b A. log a log a b log a c . B. log a log a b log a c . c c b b C. log a log b a log b c . D. log a log a c log a b . c c x 3 Câu 3. Giá trị lớn nhất của hàm số y trên đoạn [2;0] bằng x2 3 5 A. 4 . B. C. 3. D. . 2 4 Câu 4. Cho hình lăng trụ đứng ABC. ABC có đáy ABC là tam giác vuông cân tại A , AB 4a và AA a 3 . Thể tích khối lăng trụ ABC. ABC bằng 8a 3 3 A. 8a 3 3 B. 4a 3 3 . C. 16a3 3 .. D. 3 Câu 5. Gọi R là bán kính, S là diện tích mặt cầu và V là thể tích khối cầu. Công thức nào sau sai 4 V 4 A. S 4 R 2 . B. V R 2 C. R 2 D. 3V S .R . 3 R 3 Câu 6. Cho hình chóp S . ABCD có SB ABCD (xem hình dưới), góc giữa đường thẳng SC và mặt phẳng ( ABCD) là góc nào sau đây? S B C A D A. DSB B. SDA . C. SCB . D. SDC Câu 7. Hàm số y (3 x) xác định khi và chỉ khi A. x 3. B. x (0; ) . C. x (3; ) . D. x (;3) ________________________________________________________________________________________ Trang 01/07 - Mã đề thi 104
- Câu 8. Hàm số y x 4 4 x 2 3 nghịch biến trên khoảng nào sau đây? A. 0; . B. (; ) . C. 0; 2 . D. ; 2 . Câu 9. Một cấp số nhân có u1 3, u2 6 . Công bội của cấp số nhân đó là A. 2 . B. 9. C. 2. D. 3. Câu 10. Đạo hàm của hàm số y sin x là A. y sin x. B. y cos x. C. y sin x. D. y cos x Câu 11. Đường cong trong hình bên dưới là của đồ thị hàm số A. y log 2 ( x 1) . B. y 2 x 1 . C. y log 2 x . D. y 2 x . Câu 12. Số giao điểm của đồ thị hàm số y x 4 4 x 2 2 và trục hoành là A. 2. B. 4. C. 1. D. 0. 4 2 Câu 13. Số điểm cực trị của hàm số y x 4 x 5 là: A. 3. B. 0. C. 1. D. 2. x 4 Câu 14. Bất phưong trình: 1 có tập nghiệm là 3 A. (0;1) B. (1; ) . C. 0; . D. ;0 . Câu 15. Đường cong trong hình bên dưới là của đồ thị hàm số A. y 2 x 4 3 x 2 1 B. y x 3 3 x 1 x2 C. y . D. y x3 3 x 2 1 . x 1 Câu 16. Khối trụ có bán kính đáy r và đường cao h khi đó thể tích khối trụ là 2 1 A. V r 2 h . B. V rh . C. V r 2 h D. V 2 rh . 3 3 Câu 17. Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a . Biết SA ( ABCD ) và SA a 3 . Thể tích của khối chóp S . ABC bằng ________________________________________________________________________________________ Trang 02/07 - Mã đề thi 104
- a3 3 a3 3 a3 3 A. . B. a 3 3 . C. . D. . 4 3 6 Câu 18. Đường thẳng x 3 là tiệm cận của đồ thị hàm số nào sau đây ? 2x 6 x 1 x 1 x 1 A. y . B. y . C. y . D. y . x3 x 3 x3 x3 Câu 19. Cho hình trụ có bán kính đáy r 2 và chiều cao h 4 . Diện tích xung quanh của hình trụ này bằng A. 16 . B. 12 . C. 20 . D. 24 . Câu 20. Vật thể nào dưới đây không phải là khối đa diện? A. B. C. D. 3 1 a .a 3 3 Câu 21. Với a là số thực dương, biểu thức rút gọn của 5 2 là a 5 2 A. a 3 . B. a 6 . C. a 2 3 . D. a 5 . Câu 22. Tất cả các giá trị của m sao cho hàm số y x3 3mx 2 4m đồng biến trên khoảng 0; 4 là: A. m 0. B. m 2. C. 2 m 0. D. m 4. Câu 23. Cho khối chóp S . ABC có đáy là tam giác vuông tại B, AB 1, BC 2, cạnh bên SA vuông góc với đáy và SA 3 . Diện tích mặt cầu ngoại tiếp hình chóp S . ABC bằng 3 A. . B. 2 C. 12 D. 6 . 2 Câu 24. Với giá trị nào của m thì hàm số y x 3 3 x 2 mx đạt cực tiểu tại x 2 ? A. m 0 . B. m 0 . C. m 0 . D. m 0. 3a Câu 25. Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a, SD , hình chiếu vuông góc của 2 S trên mặt phẳng ABCD là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S . ABCD 2a 3 a3 a3 a3 A. . B. C. D. . 3 3 4 2 Câu 26. Số nghiệm của phương trình log 2 (3 x) log 2 (1 x) 3 là A. 1. B. 3. C. 0. D. 2. Câu 27. Hình đa diện nào dưới đây không có tâm đối xứng ? A. Hình lập phương. B. Bát diện đều. C. Tứ diện đều. D. Lăng trụ lục giác đều. 2 x Câu 28. Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số f ( x) 2 là x x6 A. 0 B. 2 . C. 3. D. 1. ________________________________________________________________________________________ Trang 03/07 - Mã đề thi 104
- Câu 29. Một hộp có chứa 7 quả cầu xanh, 5 quả cầu vàng. Chọn ngẫu nhiên 3 quả. Xác xuất để 3 quả được chọn có ít nhất 2 quả xanh là 7 4 7 21 A. . B. . C. . D. . 44 11 11 220 Câu 30. Số tiếp tuyến của đồ thị hàm số f ( x) x3 3 x 2 2 song song với đường thẳng y 9 x 2 là A. 1. B. 0 . C. 2. D. 3. Câu 31. Cho hàm số y f ( x) có bảng biến thiên: x 1 2 f x 3 1 f x Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y f ( x) là A. 0 . B. 2 . C. 1. D. 3. Câu 32. Cho lăng trụ ABC . ABC có đáy ABC là tam giác đều, AA 4a. Biết rằng hình chiếu vuông góc của A lên ABC là trung điểm M của BC , AM 2a. Thể tích của khối lăng trụ ABC . ABC là 8a 3 3 16a 3 3 A. B. . C. 16a 3 3 . D. 8a 3 3 . 3 3 Câu 33. Gọi M , C , Đ thứ tự là số mặt, số đỉnh, số cạnh của hình bát diện. Khi đó S M C Đ bằng A. S 2 . B. S 10 . C. S 14 . D. S 26 Câu 34. Một khối cầu có bán kính bằng 2, mặt phẳng cắt khối cầu đó theo một hình tròn C biết khoảng cách từ tâm khối cầu đến mặt phẳng bằng 2. Diện tích của hình tròn C là A. 2 . B. 8 . C. . D. 4 . Câu 35. Cho hai số thực a, b biết 0 a b 1. Khẳng định nào sau đây đúng? A. log a b 1 log b a. B. log b a log a b 1. C. log b a 1 log a b. D. 1 logb a log a b. Câu 36. Cho log a x, logb x. Khi đó log ab 2 x 3 bằng 3 3 3 A. . B. . C. . D. . 2 2 2 2 12 5 4 z y 2 2 Câu 37. Cho biểu thức P log ( xy ) log a2 y a log 4 a 6 4 2 2 x y x z 2x y z 4 2 3 . Với a 1, y 1 thì P đạt giá trị nhỏ nhất bằng b khi a a0 và x; y; z x1 ; y1 ; z1 hoặc x; y; z x2 ; y2 ; z2 . . Hãy tính S 21a02 22b 2 8 x1 y1 z1 x2 y2 z2 . ________________________________________________________________________________________ Trang 04/07 - Mã đề thi 104
- A. 37. B. 42. C. 44. D. 42. Câu 38. Người ta thiết kế 1 cái ly thuỷ tinh dùng để uống nước có dạng hình trụ như hình vẽ, biết rằng ở mặt ngoài ly có chiều cao là 12 cm và đường kính đáy là 8 cm, độ dài thành ly là 2mm, độ dày đáy là 1 cm. Hãy tính thể tích lượng thuỷ tinh cần để làm nên cái ly đó (kết quả gần đúng nhất). A. 603185,8 mm3 . B. 104175, 2 mm3 . C. 499010, 6 mm3 . D. 104122, 4 mm3 . Câu 39. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y x3 2 x 2 (m 2) x m có 2 điểm cực trị 1 và điểm N 2; thuộc đường thẳng đi qua hai điểm cực trị đó. 3 9 5 9 A. m B. m 1 C. m . D. m . 5 9 5 Câu 40. Cho hình nón có chiều cao bằng 4a. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng 9 3a 2 . Thể tích khối nón giới hạn bởi hình nón đã cho bằng 100a 3 80a 3 A. 10a 3 . B. 30a 3 . C. D. 3 3 Câu 41. Cho hình chóp ngũ giác đều có tổng diện tích tất cả các mặt là S 4. Giá trị lớn nhất của thể tích a 10 a khối chóp chóp ngũ giác đều đã cho có dạng max V , trong đó a, b * , là phân số b tan 36 b tối giản. Hãy tính T a b . A. 15 . B. 17 . C. 18 . D. 16 . Câu 42. Một loại kẹo có hình dạng là khối cầu với bán kính đáy bằng 1cm và được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất, tính tổng diện tích tất cả các mặt xung quanh của vỏ kẹo. A. 12 cm 2 B. 48 cm 2 C. 36 cm 2 D. 24 cm 2 Câu 43. Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M , N lần lượt thuộc các cạnh SA, SD sao cho 3SM 2 SA; 3SN 2 SD. Mặt phẳng chứa MN cắt các cạnh SB, SC lần lượt SQ tại Q , P. Đặt x, V1 là thể tích của khối chóp S .MNPQ , V là thể tích của khối chóp S . ABCD. SB 1 Tìm x để V1 V . 2 ________________________________________________________________________________________ Trang 05/07 - Mã đề thi 104
- 2 58 1 41 1 33 1 A. x . B. x . C. x . D. x . 6 4 4 2 Câu 44. Điều kiện để phương trình 12 3x 2 x m có nghiệm là m a; b , khi đó 2a b bằng A. 3. B. 8. C. 4. D. 0. 2 2 Câu 45. Cho các số thực x, y thoả mãn: x y 1, tích giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 P (2 y 1) 2 x 2 2 y 2 y 2 y 2 bằng 13 2 13 3 A. 3. B. . C. 3 3. D. . 4 4 Câu 46. Cho hàm số y f x có đạo hàm f x trên và đồ thị của hàm số y f x như hình vẽ. 1 1 1 1 7 1 Hỏi phương trình f cos 2 x cos 6 x sin 2 2 x f 0 có bao nhiêu nghiệm trong 2 2 3 4 24 2 khoảng ; 2 ? 4 A. 2 . B. 6 . C. 4 . D. 3. Câu 47. Cho hình chóp S . ABCD có đáy ABCD là hình thoi tâm O. Biết AC 4 3a, BD 4a, SD 2 2a và SO vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AB và SD bằng: 4 21 3 21 5 21 2 21 A. a. B. a. C. a. D. a. 7 7 7 7 Câu 48. Có bao nhiêu giá trị m để đồ thị hàm số y x 3 mx 2 2m cắt trục Ox tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. A. 0 . B. 1 C. 2 D. 3. Câu 49. Hàm số y x ln(2 x 3) nghịch biến trên khoảng 3 3 5 5 A. ; . B. (0; ) . C. ; D. 0; 2 2 2 2 Câu 50. Cho mặt cầu đường kính AB 2 R . Mặt phẳng P vuông góc AB tại I ( I thuộc đoạn AB ), cắt mặt cầu theo đường tròn C . Tính h AI theo R để hình nón có đỉnh A, đáy là hình tròn C có thể tích lớn nhất. ________________________________________________________________________________________ Trang 06/07 - Mã đề thi 104
- R 4R 2R A. h . B. h R C. h . D. h . 3 3 3 ____________________ HẾT ____________________ ________________________________________________________________________________________ Trang 07/07 - Mã đề thi 104
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ KHẢO SÁT CHẤT LƯỢNG KẾT HỢP THI THỬ NGHỆ AN LỚP 12 - ĐỢT 1 - NĂM HỌC 2020 - 2021 ĐỀ THI CHÍNH THỨC Bài thi: TOÁN Đề thi gồm có 05 trang Thời gian làm bài: 90 phút (không kể thời gian phát đề) Câu 1: Cho hình chóp có diện tích mặt đáy là 3a 2 và chiều cao bằng 3a . Thể tích của khối chóp bằng A. a 3 . B. 9a 3 . C. 6a 3 . D. 3a 3 . Câu 2: Cho a, b, c là các số dương, a ≠ 1. Đẳng thức nào sau đây đúng? b b A. log = a log a b + log a c. B. log = a log a b − log a c. c c b b C. log = a log b a − log b c. D. log = a log a c − log a b c c −x + 3 Câu 3: Giá trị lớn nhất của hàm số y = trên đoạn [ −2;0] bằng x−2 3 5 A. 4. B. − . C. 3. D. − . 2 4 Câu 4: Cho hình lăng trụ đứng ABC. A ' B ' C ' có đáy ABC là tam giác vuông cân tại A, AB = 4a và AA ' = a 3. Thể tích của khối lăng trụ ABC. A ' B ' C ' bằng 8a 3 3 A. 8a 3 3 . B. 4a 3 3 . C. 16a 3 3 . D. . 3 Câu 5: Gọi R là bán kính, S là diện tích mặt cầu và V là thể tích khối cầu. Công thức nào sau đây sai? 4 V 4 A. S = 4π R 2 . B. S = π R 2 . C. = π R2. D. 3V = S .R 3 R 3 Câu 6: Cho hình chóp S . ABCD có SB ⊥ ( ABCD ) (xem hình dưới), góc giữa đường thẳng SC và mặt phẳng ( ABCD ) là góc nào sau đây? 1
- A. DSB B. SDA C. SCB D. SDC (3 − x ) π Câu 7: Hàm số y= xác định khi và chỉ khi A. x ≠ 3. B. x ∈ ( 0; +∞ ) . C. x ∈ ( 3; +∞ ) . D. ( −∞;3) . Câu 8: Hàm số y =x 4 − 4 x 2 + 3 nghịch biến trên khoảng nào sau đây? A. ( 0; +∞ ) B. ( −∞; +∞ ) . ( C. 0; 2 . ) ( D. −∞; 2 ) Câu 9: Một cấp số nhân có u1 = −3, u2 = 6. Công bội của cấp số nhân đó là A. 2. B. 9. C. −2 . D. −3 . Câu 10: Đạo hàm của hàm số y = sin x là A. y ' = sin x. B. y ' = cos x. C. y ' = − sin x. D. y ' = − cos x. Câu 11: Đường cong trong hình bên dưới là của đồ thị hàm số A. y log 2 ( x + 1) . = y 2 x − 1. B. = C. y = log 2 x. D. y = 2 x. Câu 12: Số giao điểm của đồ thị hàm số y =− x 4 − 4 x 2 − 2 và trục hoành là A. 2. B. 4. C. 1. D. 0. Câu 13: Số điểm cực trị của hàm số y =x 4 − 4 x 2 + 5 là A. 3. B. 0. C. 1. D. 2. x 4 Câu 14: Bất phương trình: > 1 có tập nghiệm là 3 A. ( 0;1) . B. (1; +∞ ) . C. ( 0; +∞ ) . D. ( −∞;0 ) . Câu 15: Đường cong trong hình là đồ thị của hàm số nào dưới đây? 2
- x +1 A. y = 2 x 4 − 3 x 2 + 1. B. y = x 3 − 3 x + 1. C. y = . D. y =− x3 + 3 x 2 + 1. x −1 Câu 16: Khối trụ có bán đáy r và đường cao h khi đó thể tích khối trụ là 2 1 A. V = π r 2 h. B. V = π rh. C. V = π r 2 h. D. V = 2π rh. 3 3 Câu 17: Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a. Biết SA ⊥ ( ABCD ) và SA = a 3. Thể tích khối chóp S . ABC bằng a3 3 a3 3 a3 3 A. . B. a 3 3. C. . D. . 4 3 6 Câu 18: Đường thẳng x = 3 là tiệm cận đồ thị hàm số nào sau đây? 2x − 6 x +1 x +1 x −1 A. y = . B. y = . C. y = . D. y = . x+3 −x − 3 x −3 x+3 Câu 19: Cho hình trụ có bán kính đáy r = 2 và chiều cao h = 4. Diện tích xung quanh của hình trụ này bằng A. 16π . B. 12π . C. 20π . D. 24π . Câu 20: Vật thể nào dưới đây không phải là khối đa diện? A. B. C. D. 3 +1 a .a 3− 3 Câu 21: Với a là số thực dương, biểu thức rút gọn của là (a ) 5 +2 5 −2 A. a 3 . B. a 6 . C. a 2 3 . D. a 5 . Câu 22: Tất cả các giá trị của m sao cho hàm số y =− x3 − 3mx 2 + 4m đồng biến trên khoảng ( 0; 4 ) là A. m > 0. B. m ≤ −2. C. −2 ≤ m < 0. D. m ≤ −4. 3
- Câu 23: Cho khối chóp S . ABC có đáy là tam giac vuông tại B= , AB 1,= BC 2 , cạnh bên SA vuông góc với đáy và SA = 3. Diện tích mặt cầu ngoại tiếp hình chóp S . ABC bằng 3π A. . B. 2π . C. 12π . D. 6π . 2 Câu 24: Với giá trị nào của m thì hàm số y =x3 − 3 x 2 + mx đạt cực tiểu tại x = 2? A. m ≠ 0. B. m = 0. C. m < 0. D. m > 0. 3a Câu 25: Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a, SD = , hình chiếu vuông góc của S 2 lên mặt phẳng ( ABCD ) là trung điểm của AB . Tính theo a thể tích khối chóp S . ABCD . 2a 3 a3 a3 a3 A. . B. . C. . D. . 3 3 4 2 Câu 26: Số nghiệm của phương trình log 2 ( 3 − x ) + log 2 (1 − x ) = 3 là A. 1. B. 3. C. 0. D. 2. Câu 27: Hình đa diện nào dưới đây không có tâm đối xứng? A. Hình lập phương. B. Bát diện đều. C. Tứ diện đều. D. Lăng trụ lục giác đều. 2− x Câu 28: Số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số f ( x ) = 2 là x − x−6 A. 1. B. 3. C. 0. D. 2. Câu 29: Một hộp chứa 7 quả cầu xanh, 5 quả cầu vàng. Chọn ngẫu nhiên 3 quả. Xác suất để 3 quả được chọn có ít nhất 2 quả cầu xanh là 7 4 7 21 A. . B. . C. . D. . 44 11 11 220 Câu 30: Số tiếp tuyến của đồ thị hàm số f ( x ) =x3 − 3 x 2 + 2 song song với đường thẳng = y 9 x − 2. A. 1. B. 0. C. 2. D. 3. Câu 31: Cho hàm số y = f ( x ) có bảng biến thiên như sau: 4
- Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f ( x ) là A. 0. B. 2. C. 1. D. 3. Câu 32: Cho lăng trụ ABC. A ' B ' C ' có đáy ABC là tam giác đều, AA ' = 4a. Biết rằng hình chiếu vuông góc của A ' lên ( ABC ) là trung điểm M của BC , A ' M = 2a. Thể tích của khối lăng trụ ABC. A ' B ' C '. 8a 3 3 16a 3 3 A. . B. . C. 16a 3 3. D. 8a 3 3. 3 3 Câu 33: Gọi M , C , Đ thứ tự là số mặt, số cạnh, số đỉnh của hình bát diện. Khi đó S = M − C + Đ bằng A. S = 2. B. S = 10. C. S = 14. D. S = 26. Câu 34: Một khối cầu có bán kính bằng 2, một mặt phẳng (α ) cắt khối cầu đó theo một hình tròn ( C ) biết khoảng cách từ tâm khối cầu đến mặt phẳng (α ) bằng 2. Diện tích của hình tròn ( C ) là A. 2π . B. 8π . C. π . D. 4π . Câu 35: Cho hai số thực 0 < a < b < 1. Khẳng định nào sau đây là đúng: A. log a b < 1 < log b a. B. log b a < log a b < 1. C. log b a < 1 < log a b. D. 1 < log 6 a < log a b. Cho α log Câu 36:= = a x, β log b x. Khi đó log ab2 ( x3 ) bằng 3 αβ 3αβ 3 (α + β ) A. B. C. D. 2α + β 2α + β 2α + β α + 2β a 21 Câu 37: Cho hình chóp tam giác đều có cạnh bên bằng và mặt bên tạo với mặt đáy một góc 600. Tính 3 thể tích V của khối chóp. a3 3 a 3 .7 21 a 3 .7 21 A. V = . B. V = . C. V = a 3 3. D. V = . 3 32 96 Câu 38: Cho tứ diện ABCD có AB = 2, các cạnh còn lại bằng 4, khoảng cách giữa hai đường thẳng AB và CD bằng A. 13. B. 3. C. 2. D. 11. 5
- Câu 39: Tìm tất cả các giá trị của tham số để đồ thị hàm số y =− x3 + 2 x 2 − ( m + 2 ) x + m có 2 điểm cực trị và 1 điểm N 2; − thuộc đường thẳng đi qua hai điểm cực trị đó. 3 9 5 9 A. m = . B. m = −1. C. m = − . D. m = − . 5 9 5 Câu 40: Cho hình nón có chiều cao bằng 4a . Một mặt phẳng đi qua các đỉnh của hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng 9 3a 2 . Thể tích khối nón giới hạn bởi hình nón đã cho bằng 100a 3π 80a 3π A. 10a 3 . B. 30a 3π . C. . D. . 3 3 Câu 41: Cho hình chóp ngũ giác đều có tổng diện tích tất cả các mặt là S = 4. Giá trị lớn nhất của thể tích khối a 10 a chóp ngũ giác đều đã cho có dạng max V = , trong đó a, b ∈ *, là phân số tối giản. Hãy tính b tan 360 b T= a + b. A. 15. B. 17. C. 18. D. 16. Câu 42: Một loại kẹo có hình dạng là khối cầu với bán kính bằng 1cm được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất, tính tổng diện tích tất cả các mặt xung quanh của vỏ kẹo: A. 12cm 2 . B. 48cm 2 . C. 36cm 2 . D. 24cm 2 . Câu 43: Cho hình chóp S . ABCD có đáy ABCD là hình bình hành. Gọi M , N lần lượt thuộc các cạnh SA, SD SQ sao cho = 3SM 2= SA,3SN 2 SD. Mặt phẳng ( α ) chứa MN cắt cạnh SB, SC lần lượt tại Q, P . Đặt = x, V1 SB 1 là thể tích của khối chóp S .MNPQ , V là thể tích khối chóp S . ABCD . Tìm x để V1 = V . 2 −2 + 58 −1 + 41 −1 + 33 1 A. x = . B. x = . C. x = . D. x = . 6 4 4 2 Câu 44: Điều kiện để phương trình 12 − 3x 2 − x =m có nghiệm m ∈ [ a; b ] . Khi đó 2a − b bằng A. 3. B. −8. C. − 4. D. 0. Câu 45: Cho các số thực dương x, y thỏa mãn x 2 + y 2 = 1, tích giá trị lớn nhất và giá trị nhỏ nhất của biểu thức x 2 + ( 2 y 2 − y ) + 2 y + 2 bằng 2 ( 2 y − 1) 2 P= 13 2 13 3 A. 3. B. . C. 3 3. D. . 4 4 Câu 46: Cho hàm số f ( x ) có đạo hàm f ' ( x ) trên và đồ thị của hàm số f ' ( x ) như hình vẽ sau: 6
- 1 1 1 1 7 1 Hỏi phương trình f cos 2 x + − cos 6 x − sin 2 2 x + − f =0 có bao nhiêu nghiệm trong khoảng 2 2 3 4 24 2 π ; 2π ? 4 A. 2 B. 6 C. 4 D. 3 Câu 47: Cho hình chóp S . ABCD có đáy ABCD là hình thoi tâm O . Biết = AC 4 3=a, BD 4= a, SD 2 2a và SO vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AB và SD bằng 4 21a 3 21a 5 21a 2 21a A. . B. . C. . D. . 7 7 7 7 Câu 48: Có bao nhiêu giá trị m để đồ thị hàm số y =− x3 + mx 2 − 2m cắt trục Ox tại ba điểm phân biệt có hoành độ lập thành cấp số cộng. A. 0. B. 1. C. 2. D. 3. x − ln ( 2 x − 3) nghịch biến trên khoảng Câu 49: Hàm số y = 3 3 5 5 A. ; +∞ B. ( 0; +∞ ) C. ; D. 0; 2 2 2 2 Câu 50: Cho mặt cầu đường kính AB = 2 R. Mặt phẳng ( P ) vuông góc AB tại I ( I thuộc đoạn AB ) cắt mặt cầu theo một đường tròn ( C ) . Tính h = AI theo R để hình nón đỉnh A , đáy là ( C ) có thể tích lớn nhất. R 4R 2R A. h = R. B. h = . C. h = . D. h = . 3 3 3 ____________________ HẾT ____________________ 7
- BẢNG ĐÁP ÁN 1-D 2-B 3-D 4-A 5-B 6-C 7-D 8-C 9-C 10-B 11-B 12-D 13-A 14-C 15-B 16-A 17-D 18-C 19-A 20-A 21-A 22-B 23-D 24-B 25-B 26-A 27-C 28-D 29-C 30-C 31-B 32-D 33-A 34-A 35-A 36-C 37-A 38-D 39-D 40-D 41-B 42-D 43-A 44-B 45-D 46-D 47-A 48-C 49-C 50-C HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Chọn D. 1 1 2 là V Thể tích khối chóp = =.S .h .3a 3a 3 . .3a= 3 3 Câu 2: Chọn B. b Theo lý thuyết ta có log = a log a b − log a c. c Câu 3: Chọn D. 1 Ta có y ' =− < 0 ∀x ∈ [ −2;0] ( x − 2) 2 −x + 3 Suy ra hàm số y = nghịch biến trên khoảng ( −2;0 ) x−2 5 Suy ra max y =f ( −2 ) =− . [ −2;0] 4 Câu 4: Chọn A. 1 ( 4a ) .a = 2 V S= = .h 3 8a 3 3. 2 Câu 5: Chọn B. 4 3 Thể tích khối cầu là V= πR , nên đáp án B sai. 3 Câu 6: Chọn C. 8
- Hình chiếu vuông góc của đường thẳng SC lên mặt phẳng ( ABCD ) là BC . Suy ra ( ABCD ) ) ( SC ; ( = . SC ; BC ) SCB = Câu 7: Chọn D. Hàm số lũy thừa với số mũ không nguyên nên: 3 − x > 0 ⇔ x < 3. Câu 8: Chọn C. Tập xác đinh: D = . Ta có: y ' = 4 x3 − 8 x = 4 x ( x 2 − 2 ) . x = 0 y ' =0 ⇔ 4 x ( x 2 − 2 ) =0 ⇔ x = ± 2 Bảng xét dấu y '. ( Từ bảng xét dấu suy ra hàm số nghịch biến trên khoảng 0; 2 . ) Câu 9: Chọn C. Gọi cấp số nhân có công bội q. u 6 Ta có u2 =u1.q ⇒ q = 2 = =−2. u1 −3 Câu 10: Chọn B. y' Ta có = ( sin x ) ' ⇒= y' cos x. Câu 11: Chọn B. Câu 12: Chọn D. Phương trình hoành độ giao điểm − x 4 − 4 x 2 − 2 =0 (phương trình vô nghiệm.) 9
- Vậy đồ thị hàm số y =− x 4 − 4 x 2 − 2 không cắt trục hoành. Câu 13: Chọn A. Tập xác định của hàm số: D = . y ' 4 x 3 − 8 x. Ta có: = x = − 2 3 y ' =0 ⇔ 4 x − 8 x =0 ⇔ x =0 x = 2 Bảng biến thiên: Hàm số có 3 điểm cực trị. Câu 14: Chọn C. x x 0 4 4 4 Ta có: > 1 ⇔ > ⇔ x > 0. 3 3 3 Tập nghiệm của bất phương trình là: ( 0; +∞ ) . Câu 15: Chọn B. Đồ thị có dạng của hàm số bậc ba, nhánh cuối đi lên nên có a > 0. Do đó chọn đáp án B. Câu 16: Chọn A. Thể tích khối trụ là V = πr 2 h. Câu 17: Chọn D. a2 S = 1 a2 a3 3 Ta có ∆ABC 2 ⇒ VS . ABC = . .a =3 . SA = a 3 3 2 6 Câu 18: Chọn C. 10
- x +1 Vì lim+ = +∞ nên nhận đường thẳng x = 3 làm tiệm cận đứng. x →3 x −3 Câu 19: Chọn A. Ta có đường sinh của hình trụ là l= h= 2. π rl 2π = S xq 2= Suy ra diện tích xung quanh của hình trụ là = .2.4 16π . Câu 20: Chọn A. Cạnh AB của vật thể trong hình. A. vi phạm tính chất trong khái niệm về hình đa diện “Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác”. Cụ thể cạnh AB trong hình là cạnh chung của 4 đa giác. Câu 21: Chọn A. 3 +1 ( )( 3 +1 3− 3 ) a .a 3− 3 a a4 = = = a3. ( 5 − 2 )( 5 + 2 ) (a ) a 5 +2 5 −2 a Câu 22: Chọn B. y=− x 3 − 3mx 2 + 4m −3 x 2 − 6mx. y' = Hàm số y =− x3 − 3mx 2 + 4m đồng biến trên khoảng ( 0; 4 ) ⇔ f ' ( x ) > 0, ∀x ∈ ( 0; 4 ) ⇔ −3 x 2 − 6mx > 0, ∀x ∈ ( 0; 4 ) ⇔ −3 x 2 > 6mx, ∀x ∈ ( 0; 4 ) 11
- x ⇔ −m > , ∀x ∈ ( 0; 4 ) 2 ⇔ −m ≥ 2 ⇔ m ≤ −2. Vậy m ≤ −2. Câu 23: Chọn D. Do tam giác ABC vuông tại B nên AB ⊥ BC , mặt khác BC ⊥ SA nên BC ⊥ SB. Do vậy ta có SBC = SAC = 900 nên tâm mặt cầu ngoại tiếp của S . ABC là trung điểm của SC . SC SA2 + AC 2 SA2 + AB 2 + BC 2 6 R = Bán kính= = = . Vậy diện tích mặt cầu = π R 2 6π . S 4= 2 2 2 2 Câu 24: Chọn B. y =x3 − 3 x 2 + mx, suy ra y ' = 3 x 2 − 6 x + m; y " = 6 x − 6. Để hàm số y =x3 − 3 x 2 + mx đạt cực tiểu tại x = 2 thì y ' ( 2 ) = 0 m = 0 ⇔ ⇔m= 0. y " ( 2 ) > 0 −6 < 0 ( luon dung ) Câu 25: Chọn B. Gọi H là trung điểm của AB, khi đó SH ⊥ ( ABCD ) . 12
- a2 5a 2 9a 2 5a 2 Ta có HD 2 = AH 2 + AD 2 = + a2 = ⇒ SH = SD 2 − HD 2 = − =a 4 4 4 4 1 a3 Vậy = VS . ABCD =S ABCD .SH . 3 3 Câu 26: Chọn A. ĐK: x ≤ 1. Phương trình log 2 ( 3 − x ) + log 2 (1 − x ) =3 ⇔ log 2 ( 3 − x )(1 − x ) =3 x = −1 ⇔ ( 3 − x )(1 − x ) = 8 ⇔ x 2 − 4 x − 5 = 0 ⇔ x = 5 Kết hợp với ĐK ta có nghiệm của phương trình x = −1. Câu 27: Chọn C. Hình tứ diện đều không có tâm đối xứng. Câu 28: Chọn D. TXĐ: ( −∞; 2] \ {−2} . Ta có lim f ( x ) = 0 ⇒ y = 0 là tiệm cận ngang của đồ thị hàm số. x →−∞ lim f ( x ) = +∞ ⇒ x = −2 là tiệm cận đứng của đồ thị hàm số. x →( −2 ) Câu 29: Chọn C. n ( Ω ) =C123 C72 .C51 + C73 7 Xác suất để 3 quả được chọn có ít nhất 2 quả cầu xanh = là: P = . C123 11 Câu 30: Chọn C. Gọi M ( x0 ; y0 ) là tiếp điểm. f ' (= x ) 3x 2 − 6 x x0 = −1 Tiếp tuyến song song với đường thẳng y = 9 x − 2 ⇒ f ' ( x0 ) = 9 ⇔ 3 x02 − 6 x0 = 9 ⇒ x0 = 3 Với x0 =−1 ⇒ y0 =−2. Phương trình tiếp tuyến y = 9 ( x + 1) − 2 ⇔ y = 9 x + 7 Với x0 =3 ⇒ y0 =2. Phương trình tiếp tuyến y = 9 ( x − 3) + 2 ⇔ y = 9 x − 25 . Vậy có 2 tiếp tuyến. Câu 31: Chọn B. 13
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 101
4 p | 116 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 117
4 p | 54 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 115
4 p | 60 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 114
4 p | 61 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 110
4 p | 61 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 109
4 p | 63 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 108
4 p | 56 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 118
4 p | 41 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 106
4 p | 76 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 105
4 p | 58 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 102
4 p | 81 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 103
4 p | 74 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 104
4 p | 50 | 2
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 116
4 p | 70 | 1
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 113
4 p | 59 | 1
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 112
4 p | 63 | 1
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 111
4 p | 69 | 1
-
Đề thi KSCL môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Nam - Mã đề 107
4 p | 93 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn