intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử Đại học, Cao đẳng Toán 2012 đề 70 (Kèm hướng dẫn giải)

Chia sẻ: Ngô Thị Thu Thảo | Ngày: | Loại File: PDF | Số trang:10

57
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Để giúp cho học sinh có thêm tư liệu ôn tập và đánh giá năng lực trước kì thi Đại học, Cao đẳng Toán. Mời các bạn tham khảo đề thi thử Đại học, Cao đẳng Toán 2012 đề 70 có kèm theo đáp án. Mong rằng bạn sẽ có được điểm cao như mong muốn.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử Đại học, Cao đẳng Toán 2012 đề 70 (Kèm hướng dẫn giải)

  1. WWW.VNMATH.COM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 70) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) Câu I. (2.0 điểm) x Cho hàm số y = (C) x-1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Câu II. (2.0 điểm) 1. Giải phương trình 2cos6x+2cos4x- 3cos2x =sin2x+ 3  2 1 2 x  x  y  2   y  y 2 x  2 y 2  2 2. Giải hệ phương trình  Câu III. (1.0 điểm) 1 x  ( x sin x  2 3 )dx 0 1 x Tính tích phân Câu IV. (1.0 điểm) Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện 1 1 1   2 x y z Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1). Câu V. (1.0 điểm) Cho hình chóp S.ABCD đáy ABCD là hình thoi. SA = x (0 < x < 3 ) các cạnh còn lại đều bằng 1. Tính thể tích của hình chóp S.ABCD theo x 1
  2. WWW.VNMATH.COM PHẦN RIÊNG ( 3.0 điểm) Thí sinh chỉ được làm một trong hai phần A hoặc B (Nếu thí sinh làm cả hai phần sẽ không dược chấm điểm). A. Theo chương trình nâng cao Câu VIa. (2.0 điểm) 1. 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy. 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N. Câu VIIa. (1.0 điểm) log3 ( x  1)2  log 4 ( x  1)3 0 Giải bất phương trình x2  5x  6 B. Theo chương trình chuẩn Câu VIb. (2.0 điểm) 1. Cho điểm A(-1 ;0), B(1 ;2) và đường thẳng (d): x - y - 1 = 0. Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng (d). 2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q): x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q). Câu VIIb. (1.0 điểm) x 1 x 2 2 x 3 Giải phương trình Cx  2Cx  Cx  Cx2 ( Cn là tổ hợp chập k của n phần x k tử) 2
  3. WWW.VNMATH.COM Huong dan giai đê thi số 70 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) CÂU NỘI DUNG THANG ĐIỂM Câu I 0.25 (2.0đ) TXĐ : D = R\{1} 1. Chiều biến thiên 0.25 (1.0đ) lim f ( x)  lim f ( x)  1 x  x  nên y = 1 là tiệm cận ngang của đồ thị hàm số lim f ( x)  , lim   x 1  x 1 nên x = 1 là tiệm cận đứng của đồ thị hàm số 1  0 y’ = ( x  1)2 Bảng biến thiên 0.25 x - 1 + y' - - 1 y + 1 - Hàm số nghịc biến trên (;1) và (1; ) Hàm số không có cực trị Đồ thị.(tự vẽ) 0.25 Giao điểm của đồ thị với trục Ox là (0 ;0) Vẽ đồ thị Nhận xét : Đồ thị nhận giao điểm của 2 đường tiệm cận I(1 ;1) làm tâm đối xứng 3
  4. WWW.VNMATH.COM 2.(1.0đ) Giả sử M(x0 ; y0) thuộc (C) mà tiếp tuyến với đồ thị tại đó có khoảng 0.25 cách từ tâm đối xứng đến tiếp tuyến là lớn nhất. 1 x y ( x  x0 )  0 Phương trình tiếp tuyến tại M có dạng : ( x0  1) 2 x0  1 2 1 x0  x y 0 ( x0  1)2 ( x0  1) 2 2 0.25 x0  1 1 1 ( x0  1) 4 Ta có d(I ;tt) = 2t (1  t )(1  t )(1  t 2 ) (t  0) Xét hàm số f(t) = 1  t 4 ta có f’(t) = (1  t 4 ) 1  t 4 f’(t) = 0 khi t = 1 0.25 Bảng biến thiên từ bảng biến thiên ta c d(I ;tt) lớn nhất khi và x 0 1 + chỉ khi t = 1 hay f'(t) + 0 - f(t) 2  x0  2 x0  1  1    x0  0 + Với x0 = 0 ta có tiếp tuyến là y = -x 0.25 + Với x0 = 2 ta có tiếp tuyến là y = -x+4 4
  5. WWW.VNMATH.COM Câu 4cos5xcosx = 2sinxcosx + 2 3 cos2x 0.25 II(2.0đ) cos x=0 0.25 1.   2cos5x =sinx+ 3 cos x (1.0đ) cos x  0 0.25  cos5x=cos(x-  )  6   0.25  x  2  k   k  x     24 2   x    k 2   42 7 2.(1.0đ) ĐK : y  0 0.5  2 1 2 x  x  y  2  0   2u 2  u  v  2  0  2  1 x20   2  y2 y  2v  v  u  2  0  hệ đưa hệ về dạng 5
  6. WWW.VNMATH.COM      u  v   u  v  1  u  1  v  u  v  1  2  0.5 2v  v  u  2  0  3 7  3 7  u  2  u   2  ,   1  7 v  1  7  v    2  2 Từ đó ta có nghiệm của hệ 3 7 2 3 7 2 ; ; (-1 ;-1),(1 ;1), ( 2 7  1 ), ( 2 7 1 ) Câu III. 1 1 x 0.25 I   x sin x dx   2 3 dx (1.0đ) 0 0 1 x 1 0.25 x 2 sin x3dx Ta tính I1 = 0 đặt t = x3 ta tính được I1 = -1/3(cos1 - sin1) 1 x 0.25  1  x dx Ta tính I2 = 0 đặt t = x ta tính được I2 = 1 1   2 (1  )dt  2(1  )  2  0 1 t 2 4 2 6
  7. WWW.VNMATH.COM  0.25 2 Từ đó ta có I = I1 + I2 = -1/3(cos1 - 1)+ 2 1 1 1 0.25   2 Ta có x y z nên Câu IV. (1.0đ) 0.25 1 1 1 y 1 z 1 ( y  1)( z  1)  1 1   2 (1) x y z y z yz 1 1 1 x 1 z 1 ( x  1)( z  1)  1 1   2 (2) Tương tự ta có y x z x z xz 1 1 1 x 1 y 1 ( x  1)( y  1)  1 1   2 (3) y x y x y xy 1 0.25 ( x  1)( y  1)( z  1)  Nhân vế với vế của (1), (2), (3) ta được 8 0.25 1 3 x yz vậy Amax = 8 2 Câu V. 0.5 (1.0đ) S Ta có SBD  DCB (c.c.c)  SO  CO Tương tự ta có SO = OA vậy tam giác SCA vuông tại S. C  CA  1  x 2 D H O B A Mặt khác ta có AC 2  BD2  AB2  BC 2  CD2  AD2  BD  3  x2 (do 0  x  3) 7
  8. WWW.VNMATH.COM 1  S ABCD  1  x2 3  x2 4 Gọi H là hình chiếu của S xuống (CAB) 0.25 Vì SB = SD nên HB = HD  H  CO 1 1 1 x 0.25 2  2  2  SH  Mà SH SC SA 1  x2 1 x 3  x 2 (dvtt) Vậy V = 6 Câu 0.5 VIa. Gọi A là giao điểm d1 và d2 ta có A(3 ;0) (2.0đ) Gọi B là giao điểm d1 với trục Oy ta có B(0 ; - 4) 1. (1.0đ) Gọi C là giao điểm d2 với Oy ta có C(0 ;4) 0.5 Gọi BI là đường phân giác trong góc B với I thuộc OA khi đó ta có I(4/3 ; 0), R = 4/3 8
  9. WWW.VNMATH.COM 2. 1.0 Y (1.0đ) Chọn hệ trục toạ độ như hình vẽ D' A' Ta có M(1 ;0 ;0), N(0 ;1 ;1) C' B' B(2 ;0 ;2), C’(0 ;2 ;2) Gọi phương tình mặt cầu đi N qua 4 điểm M,N,B,C’ có dạng M D A X x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0 C B Vì mặt cầu đi qua 4 điểm Z nên ta có  5  A 1  2 A  D  0 2  2  2 B  2C  D  0 B   5     2 8  4 A  4C  D  0  1 8  4 B  4C  D  0  C    2 D  4  Vậy bán kính R = A2  B2  C 2  D  15 Câu Đk: x > - 1 0.25 VIIa (1.0đ) 3log3 ( x  1) 0.25 2 log3 ( x  1)  log3 4  0 bất phương trình ( x  1)( x  6) log3 ( x  1)  0 x6 0.25 0 x6 0.25 9
  10. WWW.VNMATH.COM Giả sử phương trình cần tìm là (x-a)2 + (x-b)2 = R2 0.25 Vì đường tròn đi qua A, B và tiếp xúc với d nên ta có hệ phương trình 0.25 (1  a) 2  b 2  R 2  (1  a)  (2  y )  R 2 2 2 Câu (a  b  1) 2  2 R 2 VIb  (2.0đ) a  0 0.5   b  1 1. R2  2 (1.0đ)  Vậy đường tròn cần tìm là: x2 + (y - 1)2 = 2 2. AB(1;1;1), nQ (1; 2;3),  AB; nQ   (1; 2;1)   1.0 Ta có (1.0đ)  AB; nQ   0  AB; nQ  Vì   nên mặt phẳng (P) nhận   làm véc tơ pháp tuyến Vậy (P) có phương trình x - 2y + z - 2 = 0 Câu 2  x  5 1.0  VIIb ĐK :  x  N (1.0đ) x 1 x 1 x 2 2 x 3 x 1 2 x 3 2 x 3 Ta có Cx  Cx  Cx  Cx  Cx2  Cx1  Cx1  Cx2  Cx2  Cx2 x x x  (5  x)!  2!  x  3 10
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0