Đề thi thử Đại học, Cao đẳng Toán 2012 đề 76 (Kèm hướng dẫn giải)
lượt xem 4
download
Mời các bạn tham khảo đề thi thử Đại học, Cao đẳng Toán 2012 đề 76 có kèm theo đáp án để làm quen với các dạng bài tập có thể xuất hiện trong kỳ thi Đại học, Cao đẳng sắp tới của các bạn học sinh. Chúc các bạn thành công.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học, Cao đẳng Toán 2012 đề 76 (Kèm hướng dẫn giải)
- WWW.VNMATH.COM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 76 ) PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0 điểm) Câu I (2.0 điểm) Cho hàm số y x 3 3x 2 2 1. Khảo sát và vẽ đồ thị (C) của hàm số. m 2. Biện luận số nghiệm của phương trình x 2 2 x 2 theo tham số m. x 1 Câu II (2.0 điểm ) 1. Giải phương trình: 3 4 sin2 2 x 2 cos 2 x 1 2 sin x 2. Giải phương trình: log x x 2 14 log16 x x3 40 log 4 x x 0. 2 3 x sin x Câu III (1.0 điểm) Tính tích phân I cos 2 x dx. 3 x 1 y z 2 Câu IV(1.0điểm) Trong không gian Oxyz cho đường thẳng d: và mặt phẳng 2 1 3 ( P) : 2 x y z 1 0 .Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng (P) . Viết phương trình của đường thẳng đi qua điểm A vuông góc với d và nằm trong (P) . Câu V:(1.0điểm) Trong không gian với hệ toạ độ Oxyz , cho hai điểm A(1;1;2) , B(2;0;2) . Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy) . PHẦN RIÊNG ( 3.0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A.Theo chương trình Chuẩn Câu VI.a(2.0 điểm) x2 1. Cho hàm số f ( x) e x sin x 3 . Tìm giá trị nhỏ nhất của f (x) và chứng minh rằng f ( x) 0 2 có đúng hai nghiệm. z1 .z 2 5 5.i 2. Giải hệ phương trình sau trong tập hợp số phức: z1 z 2 5 2.i 2 2 Câu VII.a(1.0 điểm) Trong mặt phẳng Oxy cho ABC có A 0; 5 . Các đường phân giác và trung tuyến xuất phát từ đỉnh B có phương trình lần lượt là d1 : x y 1 0,d2 : x 2 y 0. Viết phương trình ba cạnh của tam giác ABC. B.Theo chương trình Nâng cao Câu VI.b (2.0 điểm) 1 1 1. Giải phương trình 3.4 x .9 x 2 6.4 x .9 x 1 . 3 4 2. Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x.sin2x, y = 2x, x = 2 Câu VII.b (1.0 điểm) Cho hình chóp tứ giác đều SABCD có cạnh bên bằng a và mặt chéo SAC là tam giác đều. Qua A dựng mặt phẳng (P) vuông góc với SC .Tính diện tích thiết diện tạo bởi mặt phẳng (P) và hình chóp. Hết đề …
- WWW.VNMATH.COM Họ và tên thí sinh:. . . . . . . . . . . . . . . . . . . . . . . . . ……… …………….. ; Số báo danh:. . . . . . . . . ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 76 ) 2 điểm Câu I a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y x3 3x2 2. Tập xác định: Hàm số có tập xác định D R. 0,25 x 0 Sự biến thiên: y' 3x 2 6 x. Ta có y' 0 x 2 yCD y 0 2; yCT y 2 2. 0,25 Bảng biến thiên: 0,25 x 0 2 y' 0 0 2 y 2 Đồ thị: 0,25 y 3 2 1 x -3 -2 -1 1 2 3 -1 -2 -3 b) m Biện luận số nghiệm của phương trình x 2 2 x 2 theo tham số m. x 1
- WWW.VNMATH.COM x 2 2 x 2 x 1 m,x 1. Do đó số nghiệm m 0,25 Ta có x 2 2 x 2 x 1 của phương trình bằng số giao điểm của y x 2 2 x 2 x 1 , C' và đường thẳng y m,x 1. f x khi x 1 0,25 Vì y x 2 2 x 2 x 1 nên C' bao gồm: f x khi x 1 + Giữ nguyên đồ thị (C) bên phải đường thẳng x 1. + Lấy đối xứng đồ thị (C) bên trái đường thẳng x 1 qua Ox. Đồ thị: 0,25 y 3 2 1 x -3 -2 -1 1 2 3 -1 -2 -3 Dựa vào đồ thị ta có: 0,25 + m 2 : Phương trình vô nghiệm; + m 2 : Phương trình có 2 nghiệm kép; + 2 m 0 : Phương trình có 4 nghiệm phân biệt; + m 0 : Phương trình có 2 nghiệm phân biệt. Câu II 2 điểm a) Giải phương trình 3 4 sin2 2 x 2 cos 2 x 1 2 sin x Biến đổi phương trình về dạng 2 sin 3x 2 sin x 1 2 sin x 1 0 0,75 Do đó nghiệm của phương trình là 0,25 7 k 2 5 k 2 x k 2 ; x k 2 ; x ;x 6 6 18 3 18 3 b) Giải phương trình log x x 2 14 log16 x x3 40 log 4 x x 0. 2 1 1 0,25 Điều kiện: x 0; x 2; x ;x . 4 16
- WWW.VNMATH.COM Dễ thấy x = 1 là một nghiệm của pt đã cho Với x 1 . Đặt t log x 2 và biến đổi phương trình về dạng 0,5 2 42 20 0 1 t 4t 1 2t 1 1 1 0,25 Giải ra ta được t ;t 2 x 4; x . Vậy pt có 3 nghiệm x =1; 2 2 1 x 4; x . 2 Câu III 1.0 điểm a) 3 x sin x Tính tích phân I cos 2 x dx. 3 Sử dụng công thức tích phân từng phần ta có 0,25 3 1 x 3 3 dx 4 3 dx I xd cosx cosx cosx 3 J , với J cosx 3 3 3 3 Để tính J ta đặt t sin x. Khi đó 0,5 3 3 3 dx 2 dt 1 t 1 2 2 3 J cosx 1 t 2 2 ln t 1 3 ln 2 3 . 3 2 3 2 4 2 3 0,25 Vậy I ln . 3 2 3 Câu IV 1.0 điểm Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng (P) . Viết phương trình của đường thẳng đi qua điểm A vuông góc với d và nằm trong (P) . 1 7 0,25 Tìm giao điểm của d và (P) ta được A 2; ; 2 2 uu r uu r uu r uu uu r r Ta có ud 2;1; 3 ,nP 2;1;1 u ud ;n p 1; 2; 0 0,5 1 7 0,25 Vậy phương trình đường thẳng là : x 2 t; y 2t; z . 2 2 Câu V 1.0 điểm Trong không gian với hệ toạ độ Oxyz , cho hai điểm A(1;1;2) , B(2;0;2) . Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy) . OA, OB 2; 2; 2 2 1;1; 1 OAB : x y z 0 . Oxy : z 0 . N x; y; z cách đều OAB và Oxy
- WWW.VNMATH.COM x yz z d N , OAB d N , Oxy 3 1 x y z 3z x y 3 1 z 0 x y 3 1 z 0. Vậy tập hợp các điểm N là hai mặt phẳng có phương trình x y 3 1 z 0 và x y 3 1 z 0 . Câu VIa 2.0 điểm 1. x2 Cho hàm số f ( x) e x sin x 3 . Tìm giá trị nhỏ nhất của f (x) và chứng 2 minh rằng f ( x) 0 có đúng hai nghiệm. Ta có f ( x ) e x x cos x. Do đó f ' x 0 e x x cos x. 0,25 Hàm số y e x là hàm đồng biến; hàm số y x cosx là hàm nghịch biến 0,25 vì y' 1 sin x 0,x . Mặt khác x 0 là nghiệm của phương trình e x x cos x nên nó là nghiệm duy nhất. Lập bảng biến thiên của hàm số y f x (học sinh tự làm) ta đi đến kết 0,5 luận phương trình f ( x) 0 có đúng hai nghiệm. Từ bảng biến thiên ta có min f x 2 x 0. x2 Cho hàm số f ( x) e x sin x 3 . Tìm giá trị nhỏ nhất của f (x) và chứng 2 minh rằng f ( x) 0 có đúng hai nghiệm. Ta có f ( x ) e x x cos x. Do đó f ' x 0 e x x cos x. 0,25 2. z1 .z 2 5 5.i . Giải hệ phương trình sau trong tập hợp số phức: z1 z 2 5 2.i 2 2 Đáp số: (2 – i; -1 – 3.i), (-1 – 3i; 2 – i), (-2 + i; 1 + 3i), (1 + 3i; -2 + i) Câu 1.0 điểm VII.a Trong mặt phẳng Oxy cho ABC có A 0; 5 . Các đường phân giác và trung tuyến xuất phát từ đỉnh B có phương trình lần lượt là d1 : x y 1 0,d2 : x 2 y 0. Viết phương trình ba cạnh của tam giác ABC. Ta có B d1 d2 B 2; 1 AB : 3x y 5 0. 0,25 Gọi A' đối xứng với A qua d1 H 2; 3 , A' 4;1 . 0,25
- WWW.VNMATH.COM Ta có A' BC BC : x 3 y 1 0. 0,25 Tìm được C 28; 9 AC : x 7 y 35 0. 0,25 Câu VI.b 2.0 điểm 1. 1 1 Giải phương trình 3.4 x .9 x 2 6.4 x .9 x 1 3 4 9 0,5 Biến đổi phương trình đã cho về dạng 3.22 x 27.32 x 6.22 x .32 x 4 x 3 2 2 0,5 Từ đó ta thu được x log 3 2 39 2 39 Tính diện tích hình phẳng giới hạn bởi các đường sau 2. y = x.sin2x, y = 2x, x = 2 Ta có: x.sin2x = 2x x.sin2x – 2x = 0 x(sin2x – 2) =0 x = 0 Diện tích hình phẳng là: 0.5 S ( x.sin 2 x 2 x)dx x(sin 2 x 2)dx 2 2 0 0 du dx 0.5 u x 2 2 2 Đặt cos 2 x S dv (sin 2 x 2)dx v 2x 4 2 4 4 4 2 (đvdt) Câu 1.0 điểm VII.b Cho chóp tứ giác đều SABCD có cạnh bên bằng a và mặt chéo SAC là tam giác đều. Qua A dựng mặt phẳng (P) vuông góc với SC .Tính diện tích thiết diện tạo bởi mặt phẳng (P) và hình chóp. Học sinh tự vẽ hình 0,25 Để dựng thiết diện, ta kẻ AC' SC. Gọi I AC' SO. 0,25 1 1 2 a 3 a2 3 0,5 Kẻ B' D' // BD. Ta có S AD' C' B' B' D' .AC' . BD. . 2 2 3 2 6
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học-Cao đẳng môn Hoá học - THPT Tĩnh Gia
4 p | 1797 | 454
-
Đề thi thử Đại học, Cao đẳng môn Tiếng Anh khối D 2014 - Đề số 2
13 p | 310 | 54
-
Đề thi thử đại học, cao đẳng lần 1 môn Hóa - THPT Ninh Giang 2013-2014, Mã đề 647
4 p | 114 | 9
-
Đề thi thử đại học cao đẳng lần V môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 112 | 8
-
Đề thi thử đại học cao đẳng lần IV môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 107 | 7
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 55 (Kèm hướng dẫn giải)
10 p | 68 | 5
-
Đề thi thử đại học cao đẳng lần III môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 110 | 4
-
Đề thi thử Đại học, Cao đẳng môn Hóa 2014 đề 23
5 p | 54 | 4
-
Đề thi thử Đại học, Cao đẳng môn Hóa 2014 đề 18
6 p | 52 | 4
-
Đề thi thử Đại học, Cao Đẳng môn Hóa 2014 đề số 8
6 p | 56 | 4
-
Đề thi thử Đại học, Cao đẳng môn Hóa 2014 đề 17
5 p | 89 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 99 (Kèm theo đáp án)
4 p | 48 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 78 (Kèm hướng dẫn giải)
7 p | 47 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 38 (Kèm đáp án)
6 p | 67 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 18 (Kèm đáp án)
7 p | 73 | 3
-
Đề thi thử Đại học Cao đẳng lần 1 năm 2013 môn Hóa học - Trường THPT Quỳnh Lưu 1
18 p | 80 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 52 (Kèm đáp án)
6 p | 54 | 2
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 30 (Kèm đáp án)
6 p | 60 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn