Đề thi thử đại học lần 1 Môn : Toán- Khối A - Trường THPT Nguyễn Huệ
lượt xem 11
download
Tham khảo tài liệu 'đề thi thử đại học lần 1 môn : toán- khối a - trường thpt nguyễn huệ', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học lần 1 Môn : Toán- Khối A - Trường THPT Nguyễn Huệ
- phuloc@gmail.com sent to http://laisac.page.tl ®Ò thi thö ®¹i häc lÇn 1 n¨m 2010 Tr−êng THPT NguyÔn HuÖ M«n: TO¸N ; Khèi: A,B (Thêi gian l m b i: 180 phót) PhÇn chung cho tÊt c¶ thÝ sinh (7,0 ®iÓm) 2x +1 C©u I (2 ®iÓm) Cho h m sè y = x +1 1. Kh¶o s¸t sù biÕn thiªn v vÏ ®å thÞ (C) cña h m sè ® cho. 2. T×m trªn (C) nh÷ng ®iÓm cã tæng kho¶ng c¸ch ®Õn hai tiÖm cËn cña (C) nhá nhÊt. C©u II (2 ®iÓm) x+1 + y −1 = 4 1. Gi¶i hÖ ph−¬ng tr×nh: x+6 + y + 4 = 6 2(cos x − sin x) 1 = 2. Gi¶i ph−¬ng tr×nh: tan x + cot 2 x cot x − 1 C©u III (1 ®iÓm) Trong mÆt ph¼ng (P) cho ®−êng trßn (C) t©m O ®−êng kÝnh AB = 2R.Trªn ®−êng th¼ng vu«ng 2R gãc víi (P) t¹i O lÊy ®iÓm S sao cho OS = R 3 . I l ®iÓm thuéc ®o¹n OS víi SI = . M l mét 3 ®iÓm thuéc (C). H l h×nh chiÕu cña I trªn SM. T×m vÞ trÝ cña M trªn (C) ®Ó tø diÖn ABHM cã thÓ tÝch lín nhÊt.T×m gi¸ trÞ lín nhÊt ®ã. C©u IV (1 ®iÓm) 1 dx ∫ 1+ x + TÝnh tÝch ph©n: I= 1 + x2 −1 C©u V (1 ®iÓm) Cho x, y, z l 3 sè thùc d−¬ng tháa m n xyz=1. Chøng minh r»ng 1 1 1 + + ≤1 x + y +1 y + z +1 z + x +1 PhÇn riªng (3,0 ®iÓm).ThÝ sinh chØ ®−îc l m mét trong hai phÇn (phÇn A hoÆc B) A.Theo ch−¬ng tr×nh ChuÈn C©u VI.a (1 ®iÓm) Trong mÆt ph¼ng Oxy cho tam gi¸c ABC biÕt A(2; - 3), B(3; - 2), cã diÖn tÝch 3 v träng t©m thuéc ®−êng th¼ng ∆ : 3x – y – 8 = 0. T×m täa ®é ®Ønh C. b»ng 2 C©u VII.a (1 ®iÓm) Tõ c¸c ch÷ sè 0,1,2,3,6,7,8,9 cã thÓ lËp ®−îc bao nhiªu sè tù nhiªn cã 6 ch÷ sè ®«i mét kh¸c nhau ( ch÷ sè ®Çu tiªn ph¶i kh¸c 0) trong ®ã ph¶i cã ch÷ sè 7. C©u VIII.a (1 ®iÓm) T×m a ®Ó bÊt ph−¬ng tr×nh sau cã nghiÖm: log 1 x 2 + 1 > log 1 ( ax + a ) 3 3 B.Theo ch−¬ng tr×nh N©ng cao x2 y2 + = 1 v ®−êng th¼ng ∆ :3x + 4y =12. C©u VI.b (1 ®iÓm) Trong mÆt ph¼ng Oxy cho elip (E): 4 3 Tõ ®iÓm M bÊt k× trªn ∆ kÎ tíi (E) c¸c tiÕp tuyÕn MA, MB. Chøng minh r»ng ®−êng th¼ng AB lu«n ®i qua mét ®iÓm cè ®Þnh. x2 + 4x + 3 C©u VII.b (1 ®iÓm) Cho h m sè y = cã ®å thÞ (C).Gi¶ sö ®−êng th¼ng y = kx + 1 c¾t (C) x+2 t¹i 2 ®iÓm ph©n biÖt A, B. T×m tËp hîp trung ®iÓm I cña AB khi k thay ®æi. ( ) ( ) log2 x log2 x 3 +1 + x. 3 −1 = 1 + x2 C©u VIII.b (1 ®iÓm) Gi¶i ph−¬ng tr×nh: ------------ ------------- HT -
- ®¸p ¸n – thang ®iÓm Trêng THPT NguyÔn HuÖ ®Ò thi thö ®¹i häc lÇn 1 n¨m 2010 M«n: TO¸N - Khèi: A,B Lu ý:Mäi c¸ch gi¶i ®óng v ng¾n gän ®Òu cho ®iÓm tèi ®a C©u §¸p ¸n §iÓm I 1.(1,0 ®iÓm) Kh¶o s¸t . . . (2,0 ®iÓm) * TËp x¸c ®Þnh: D = R\{ - 1} * Sù biÕn thiªn 0,25 - Giíi h¹n v tiÖm cËn: xl→+∞ y = xlim y = 2 ; tiÖm cËn ngang: y = 2 im →−∞ lim y = +∞; lim + y = −∞ ; tiÖm cËn ®øng: x = - 1 x → ( −1)− x → ( −1) - B¶ng biÕn thiªn 1 Ta cã y ' = < 0 víi mäi x ≠ - 1 0,5 ( x + 1)2 x -∞ +∞ -1 y’ + + +∞ y 2 -∞ 2 H m sè ®ång biÕn trªn mçi kho¶ng (- ∞ ; -1) v ( -1; + ∞ ) * §å thÞ 0,25 2. (1,0 ®iÓm) T×m trªn (C) nh÷ng ®iÓm. . . 2 x0 + 1 0,25 Gäi M(x0;y0) l mét ®iÓm thuéc (C), (x0 ≠ - 1) th× y0 = x0 + 1 Gäi A, B lÇn lît l h×nh chiÕu cña M trªn TC§ v TCN th×
- 0,25 2x +1 1 MA = |x0+1| , MB = | y0- 2| = | 0 - 2| = | | x0 + 1 x0 + 1 0,25 1 Theo Cauchy th× MA + MB ≥ 2 x 0 + 1 . =2 x0 + 1 ⇒ MA + MB nhá nhÊt b»ng 2 khi x0 = 0 hoÆc x0 = -2.Nh vËy ta cã hai 0,25 ®iÓm cÇn t×m l (0;1) v (-2;3) II 1.(1,0 ®iÓm) Gi¶i hÖ . . . §iÒu kiÖn: x ≥ -1, y ≥ 1 0,25 Céng vÕ theo vÕ råi trõ vÕ theo vÕ ta cã hÖ (2,0 ®iÓm) 0,25 x+1 + x+6 + y −1 + y +4 =10 x+6 − x+1 + y +4 − y −1 = 2 §Æt u= x + 1 + x + 6 , v = y − 1 + y + 4 . Ta cã hÖ { u + v = 10 u= 5 0,25 ⇒ v =5 5 5 + =2 u v { x= 3 0,25 ⇒ y =5 l nghiÖm cña hÖ 2. (1,0 ®iÓm) Gi¶i ph¬ng tr×nh . . . §iÒu kiÖn:sinx.cosx ≠ 0 v cotx ≠ 1 0,25 Ph¬ng tr×nh t¬ng ®¬ng 0,25 2(cos x − sin x ) 1 = sin x cos 2 x cos x + −1 cos x sin 2 x sin x π 2 ⇒ x = ± + k 2π ⇒ cosx = 0,25 2 4 π + k 2π §èi chiÕu ®iÒu kiÖn pt cã 1 hä nghiÖm x = − 0,25 4 III T×m vÞ trÝ . . .
- (1,0 ®iÓm) S H I O B A M 2R Tø gi¸c IHMO néi tiÕp nªn SH.SM = SI.SO m OS = R 3 , SI = , 3 0,25 SO 2 + OM 2 = 2 R ⇒ SH = R hay H l trung ®iÓm cña SM SM = 1 3 Gäi K l h×nh chiÕu vu«ng gãc cña H lªn mp(MAB) th× HK = SO= R, 2 2 (kh«ng ®æi) ⇒ VBAHM lín nhÊt khi dt( ∆ MAB) lín nhÊt ⇒ M l ®iÓm gi÷a cña cung AB 0,25 33 Khi ®ã VBAHM= R (®vtt) 6 0,5 IV TÝnh tÝch ph©n . . . (1,0 ®iÓm) §Æt u = x+ 1 + x 2 th× u - x= 1 + x 2 ⇒ x 2 − 2ux + u 2 = 1 + x 2 u2 −1 1 1 ⇒x= ⇒ dx = 1 + 2 du 2 u 2u §æi cËn x= - 1 th× u = 2 -1 0,25 x = 1 th× u = 2 +1 1 1 1 + 2 du 1 2 +1 2 +1 2 +1 0,25 ⇒I= ∫ u du 1 du 2 ∫ 1+ u + 2 ∫ = 1+ u (1 + u )u 2 2 2 −1 2 −1 2 −1 2 +1 2 +1 1 1 1 1 du 1 ∫ 1+ u + 2 ∫ = 2− + 0,25 du u u +1 2 −1 2 u 2 −1 =1 0,25 §Æt x=a3 y=b3 z=c3 th× x, y, z >0 v abc=1.Ta cã C©u V 0,25 (1,0 ®iÓm) a3 + b3=(a+b)(a2+b2-ab) ≥ (a+b)ab, do a+b>0 v a2+b2-ab ≥ ab ⇒ a3 + b3+1 ≥ (a+b)ab+abc=ab(a+b+c)>0
- 1 1 ≤ ⇒ a + b + 1 ab ( a + b + c ) 3 3 0,5 T¬ng tù ta cã 1 1 1 1 , ≤ ≤ b + c + 1 bc ( a + b + c ) c + a + 1 ca ( a + b + c ) 33 3 3 Céng theo vÕ ta cã 1 1 1 1 1 1 =3 +3 3 +3 3 + + x + y +1 y + z +1 z + x +1 a + b +1 b + c +1 c + a +1 3 1 1 1 1 1 (c + a + b) = 1 + + = ≤ ( a + b + c ) ab bc ca ( a + b + c ) DÊu b»ng x¶y ra khi x=y=z=1 0,25 VI. a T×m täa ®é . . . (1,0 ®iÓm) Ta cã: AB = 2 , M = ( 5 ; − 5 ), pt AB: x – y – 5 = 0 2 2 3 1 3 S ∆ABC = d(C, AB).AB = ⇒ d(C, AB)= 0,25 2 2 2 1 Gäi G(t;3t-8) l träng t©m tam gi¸c ABC th× d(G, AB)= 2 t − (3t − 8) − 5 1 ⇒ d(G, AB)= = ⇒ t = 1 hoÆc t = 2 2 2 0,5 ⇒ G(1; - 5) hoÆc G(2; - 2) 0,25 uuuu r uuuu r M CM = 3GM ⇒ C = (-2; 10) hoÆc C = (1; -4) VII. a Tõ c¸c ch÷ sè . . . (1,0 ®iÓm) Gäi sè cã 6 ch÷ sè l abcdef NÕu a = 7 th× cã 7 c¸ch chän b, 6 c¸ch chän c, 5 c¸ch chän d, 4 c¸ch 0,25 chän e, 3 c¸ch chän f. ë ®©y cã 7.6.5.4.3 = 2520sè NÕu b = 7 th× cã 6 c¸ch chän a, 6 c¸ch chän c, 5 c¸ch chän d, 4 c¸ch chän e, 3 c¸ch chän f. ë ®©y cã 6.6.5.4.3 = 2160sè 0,5 T¬ng tù víi c, d, e, f VËy tÊt c¶ cã 2520+5.2160 = 13320 sè 0,25 VIII. a T×m a ®Ó . . . (1,0 ®iÓm) §iÒu kiÖn: ax + a > 0 Bpt t¬ng ®¬ng x 2 + 1 < a( x + 1) x2 + 1 0 th× x +1 >0.Ta cã x +1
- x2 + 1 >a NÕu a
- 2k +3 x = 2k −2 2x2 + 5x − 2 0,25 y =kx+1 ⇒ y = 2x − 2 2 x2 + 5x − 2 VËy quÜ tÝch cÇn t×m l ®êng cong y = 2x − 2 Gi¶i ph¬ng tr×nh . . . VIII. b (1,0 ®iÓm) §iÒu kiÖn : x>0 ( ) ( ) 0,25 log 2 x log 2 x 3 +1 3 −1 = v ta cã pt §Æt =u, u +uv2 = 1 + u2 v2 ⇔ (uv2-1)(u – 1) = 0 0,5 ⇔ u =2 . . . x =1 1 0,25 uv =1
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p | 869 | 155
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p | 141 | 6
-
Đề thi thử Đại học lần 4 môn Toán
6 p | 106 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 82 | 5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p | 86 | 3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p | 123 | 3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p | 121 | 3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p | 93 | 3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p | 82 | 3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p | 109 | 3
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p | 110 | 2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p | 97 | 2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p | 111 | 2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p | 75 | 2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p | 95 | 2
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p | 108 | 2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p | 115 | 2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p | 130 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn