intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử Đại học lần 1 môn Toán khối B năm 2011 - Trường THPT Lương Ngọc Quyến

Chia sẻ: Phí Thu Thảo | Ngày: | Loại File: DOC | Số trang:5

94
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi thử Đại học lần 1 môn Toán khối B năm 2011 - Trường THPT Lương Ngọc Quyến có kèm đáp án. Đây là tài liệu ôn tập và luyện thi tốt giúp các em biết được những dạng Toán sẽ ra trong kì thi ĐH để có sự chuẩn bị chu đáo cho kì thi sắp tới.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử Đại học lần 1 môn Toán khối B năm 2011 - Trường THPT Lương Ngọc Quyến

  1. SỞ GD&ĐT THÁI NGUYÊN ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT NĂM 2011 TRƯỜNG THPT LƯƠNG NGỌC QUYẾN MÔN: TOÁN - KHỐI B (Thời gian làm bài 180 phút không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm). Câu I: (2,0 điểm). Cho hàm số y = x3 – 3mx2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) c ủa hàm s ố trong trường hợp đó. Câu II: (2,0 điểm). 1. Giải phương trình sau: (1 – tanx) (1+ sin2x) = 1 + tanx. 51 − 2x − x 2 2. Giải bất phương trình:
  2. ĐÁP ÁN, THANG ĐIỂM THI THỬ ĐẠI HỌC NĂM 2010 – MÔN TOÁN – KHỐI B Câu Nội dung Điể m I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) CâuI 2.0 1. y’= 3x – 6mx + m -1, ∆ ' = 3(3m − m + 1) > 0 ∀m => hs luôn có cực trị 2 2 0.5 y '(2) = 0 2. y’’ = 6x - 6m => hs đạt cực tiểu tại x = 2 � � m =1 y ''(2) > 0 0.5 +) Với m =1 => y = x -3x + 2 (C) 3 TXĐ: D = R x=0 Chiều biến thiên: y ' = 3x − 6 x, y' = 0 2 x=2 0.25 => hs đồng biến trên mỗi khoảng (− ;0) và (2; + ) , nghịch biến trên khoảng (0 ;2) Giới hạn: xlim y = − , xlim y = + − + Điểm uốn: y’’ =6x – 6, y’’ đổi dấu khi x đi qua x = 1 => Điểm uốn U(1; 0) 0,25 BBT x - 0 2 + y’ + 0 - 0 + 2 + y - -2 0.25 + Đồ thị (C): Đồ thị cắt trục hoành tại điểm (1; 0), 1 y f(x)=x^3-3x^2+2 ( ) 3;0 , trục tung tại điểm (0; 2) 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 Đồ thị nhận điểm uốn làm tâm đối xứng 0.25 CâuII 2.0 π 1. TXĐ: x + lπ (l Z) 2 0,25 2t � 2t � t=0 Đặt t= tanx => sin 2 x = 2 , đc pt: (1 − t ) �+ 1 2 � = 1+ t 0,25 1+ t � 1+ t � t = −1 Với t = 0 => x = k π , (k Z ) (thoả mãn TXĐ) 0,25 π Với t = -1 => x = − + kπ (thoả mãn TXĐ) 0,25 4 2. 1,0 2
  3. 1− x < 0 51 − 2 x − x 2 0 51 − 2 x − x 2 0 1− x 51 − 2 x − x 2 0 51 − 2 x − x < (1 − x) 2 2 0,5 x >1 x ��1 − 52; −1 + 52 � − � � x 1 − x 2 = cos t , dx = cos tdt 0,25 π 4 A= ( sin t ) dt 2 0,25 0 π −2 A= 8 0,5 Câu IV 1,0 S M I N QI A D H O B P C a. Kẻ MQ//SA => MQ ( ABCD) (α ) ( MQO) ⊥ 0,25 Thiết diện là hình thang vuông MNPQ (MN//PQ) ( MN + PQ).MQ 3a 2 Std = = (đvdt) 2 8 0.25 b. ∆AMC : OH / / AM , AM ⊥ SD, AM ⊥ CD � AM ⊥ ( SCD ) � OH ⊥ ( SCD ) 0.25 Gọi K là hình chiếu của O trên CI � OK ⊥ CI , OH ⊥ CI � CI ⊥ (OKH ) � CI ⊥ HK Trong mp(SCD) : H, K cố định, góc HKC vuông => K thuộc đường tròn đg kính HC 0.25 3
  4. uuuu r uuuu r CâuV M�∆ � M (2t + 2; t ), AM = (2t + 3; t − 2), BM = (2t − 1; t − 4) 0.25 2 AM 2 + BM 2 = 15t 2 + 4t + 43 = f (t ) 0.25 � 2� � 26 2� Min f(t) = f � � M � ; − � − => 0,5 � 15 � � 15 15 � II. PHẦN RIÊNG(3,0 điểm) A. Chương trình chuẩn CâuVI.a 2.0 a. (C) : I(1; 3), R= 2, A, B (C ) , M là trung điểm AB => IM ⊥ AB => Đường thẳng d cần tìm là đg thẳng AB 0,5 uuu r d đi qua M có vectơ pháp tuyến là IM => d: x + y - 6 =0 0,5 2. Đg thẳng tiếp tuyến có dạng : y = - x + m  x + y – m =0 (d’) 0.25 d’ tiếp xúc với (C) � d ( I ; d ') = R = 2 0.25 m = 4+2 2 0,25 m = 4−2 2 x + y − (4 + 2 2) = 0 Pt tiếp tuyến : x + y − (4 − 2 2) = 0 0,25 CâuVII.a 1.0 (1 + i ) 21 − 1 0,25 P = 1 + (1 + i ) + ... + (1 + i ) 20 = i 10 (1 + i ) 21 = � + i) 2 � .(1 + i ) = (2i )10 (1 + i ) = −210 (1 + i) (1 � � 0,25 −2 (1 + i) − 1 10 P= i ( = −210 + 210 + 1 i ) 0,25 Vậy: phần thực −210 , phần ảo: 210 + 1 0,25 B. Chương trình nâng cao Câu 2.0 VI.b uu r 1. ∆ �d = B � B(−3 + 2t;1 − t; −1 + 4t ) , Vt chỉ phương ud = (2; −1; 4) 0,5 uuu uu r r AB.ud = 0 � t = 1 0,5 => B(-1;0;3) 0,5 x = −1 + 3t Pt đg thẳng ∆ AB : y = 2t 0,5 z = 3−t Câu VII.b 2 V = π ln 2 xdx 0.25 1 1 Đặt u = ln x � du = 2 ln x. dx; dv = dx � v = x 2 x 0.25 � V = 2π ( ln 2 − 2 ln 2 + 1) 2 0.5 (Học sinh giải đúng nhưng không theo cách như trong đáp án, gv vẫn cho điểm tối đa tương ứng như trong đáp án ). 4
  5. 5
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2