intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử Đại học lần 1 môn Toán năm 2014 - Trường THPT chuyên Nguyễn Quang Diêu

Chia sẻ: Tran Tran | Ngày: | Loại File: PDF | Số trang:6

64
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tham khảo thi Đại học năm 2014 môn Toán khối A, A1, B có kèm theo đáp án, giúp các bạn dễ dàng ôn luyện và hệ thống lại kiến thức Toán học thật tốt.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử Đại học lần 1 môn Toán năm 2014 - Trường THPT chuyên Nguyễn Quang Diêu

  1. www.VNMATH.com SỞ GD & ĐT ĐỒNG THÁP  ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 ­ LẦN 1  THPT Chuyên Nguyễn Quang Diêu  Môn: TOÁN; Khối  A + A1  + B  Thời gian làm bài: 180 phút, không kể thời gian phát đề  ĐỀ CHÍNH THỨC  I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)  Câu 1 (2,0 điểm). Cho hàm số y = - x 3 + 3 x 2  + 3m ( m + 2 ) x + 1 (1), với m  là tham số thực.  a)  Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 0 .  b)  Tìm m  để đồ thị hàm số (1)  có hai điểm cực trị đối xứng nhau qua điểm I (1;3 ) .  Câu 2 (1,0 điểm). Giải phương trình  cos x + tan x = 1 + tan x sin x .  ì 4 x 2 + 4 xy + y 2 + 2 x + y - 2 = 0 ï Câu 3 (1,0 điểm). Giải hệ phương trình í ( x , y Î ¡  .  ) 2 ï8 1 - 2 x + y - 9 = 0 î Câu 4 (1,0 điểm). Tính tích phân  I  = 1  x 3 dx  .  ò x 0  2 + x 4  + 1 Câu 5 (1,0 điểm).  Cho hình lăng trụ ABCD. A ' B ' C ' D ' có đáy ABCD  là hình vuông cạnh a , cạnh bên AA ' = a , hình chiếu vuông góc của A ' trên mặt phẳng ( ABCD  trùng với trung điểm I  của AB . Gọi K  ) là trung điểm của BC . Tính theo a thể tích khối chóp A '.IKD  và khoảng cách từ I  đến mặt phẳng ( A ' KD ) .  3 Câu 6 (1,0 điểm). Cho các số thực dương x , y, z  thỏa mãn x + y + z £  . Tìm giá trị nhỏ nhất của biểu  2 2 2 2 x y z 1 1 1 thức P = + + + + +  .  y z x x y z II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)  A. Theo chương trình Chuẩn  Câu 7.a (1.0 điểm). Trong mặt phẳng với hệ trục tọa độ (Oxy  , cho hình chữ nhật ABCD  có đường chéo ) AC : x + 2 y - 9 = 0 . Điểm M (0; 4) nằm trên cạnh BC . Xác định tọa độ các đỉnh của hình chữ nhật đã cho  biết rằng diện tích của hình chữ nhật đó bằng 6 , đường thẳng CD  đi qua N (2;8) và đỉnh C  có tung độ  là một số nguyên.  Câu 8.a (1.0 điểm). Trong không gian với hệ tọa độ  Oxyz , cho mặt phẳng (P ) : x + y + z + 3 = 0 và hai  uuur uuur  điểm A(3;1;1), B  (7;3; 9) . Tìm trên mặt phẳng (P  điểm M  sao cho MA + MB đạt giá trị nhỏ nhất.  ) Câu 9.a (1.0 điểm). Trong một chiếc hộp có 6 viên bi đỏ, 5 viên bi vàng và 4 viên bi trắng. Lấy ngẫu nhiên  trong hộp ra 4 viên bi. Tính xác suất để trong 4 bi lấy ra không có đủ cả ba màu.  B. Theo chương trình Nâng cao  Câu 7.b (1.0 điểm). Trong mặt phẳng với hệ trục tọa độ (Oxy  , cho hình chữ nhật ABCD . Hai điểm B, C  ) thuộc trục tung. Phương trình đường chéo AC : 3x + 4 y - 16 = 0 . Xác định tọa độ các đỉnh của hình chữ  nhật đã cho biết rằng bán kính đường tròn nội tiếp tam giác ACD  bằng 1.  x -1 y + 1 z -1 Câu 8.b (1.0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) : = = và  1 - 2 3 hai điểm A(2;1;1); B  0) . Tìm điểm M  thuộc (D  sao cho tam giác AMB  có diện tích nhỏ nhất.  (1;1; ) ì101+ lg( x + y ) = 50 ï Câu 9.b (1.0 điểm). Giải hệ phương trình í .  ï lg( x - y ) + lg( x + y ) = 2 - lg 5 î  ­­­­­­­­­­­­­­ Hết ­­­­­­­­­­­­­ 
  2. www.VNMATH.com SỞ GD&ĐT ĐỒNG THÁP                                              ĐÁP ÁN – THANG ĐIỂM  ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014  ĐỀ CHÍNH THỨC  Môn: TOÁN; Khối A, A1  và khối B  (Đáp án – thang điểm gồm 06 trang)  Câu  Đáp án  Điểm  1  a. (1,0 điểm)  (2,0 điểm) Khi m = 0 ta có y = - x 3 + 3 x 2 + 1 0,25  ·  Tập xác định: D = ¡ ·  Sự biến thiên: - Chiều biến thiên: y ' = -3x 2 + 6 x ; y ' = 0 Û x = 0 hoặc x = 2 Khoảng đồng biến: (0;2) ; các khoảng nghịch biến: (-¥  0) và (2; +¥) ; 0,25 - Cực trị: Hàm số đạt cực tiểu tại x = 0; yCT = 1 ; đạt cực đại tại x = 2, yCÑ = 5 - Giới hạn: lim y = +¥ ; lim y = -¥  x ®-¥ x ®+¥ - Bảng biến thiên: 0,25 x -¥ 0 2 +¥ y' - 0 + 0 - y +¥ 5 1 -¥  ·  Đồ thị:  0,25  b. (1,0 điểm)  Ta có: y ' = -3x 2 + 6 x + 3m 2 + 6m 0,25  é x = -m y ' = 0 Û x 2 - 2 x - m (m + 2) = 0 Û ê ë x = m + 2 Hàm số có hai cực trị Û y ' = 0 có hai nghiệm phân biệt Û m + 2 ¹ - m Û m ¹ -  1 0,25  3 Với x = - m Þ y = -2 m - 3m + 1 2 0,25  Với x = m + 2 Þ y = 2 m 3 + 9 m 2 + 12 m + 5 ( ) ( Tọa độ hai điểm cực trị là A -m; -2m 3 - 3m 2 + 1 và B m + 2; 2 m 3 + 9 m 2 + 12m + 5 ) ï x + xB = 2 xI ì ém = 0 0,25  I (1;3 ) là trung điểm của AB Û í A Û 6m 2 + 12m = 0 Û ê ï y A + yB = 2 yI î  ë m = -2 Vậy giá trị m cần tìm là m = 0, m = -  .  2 2  Điều kiện: cos x ¹ 0 .  0,25 (1,0 điểm)  Phương trình đã cho tương đương với cos2 x + sin x = cos x + sin 2 x
  3. Û (cos x - sin x )(cos x www.VNMATH.com + sin x - 1) = 0 0,25 p 0,25 cos x - sin x = 0 Û tan x = 1 Û x = + kp (k Î ¢  ) 4 é x = k 2p 0,25  æ pö 1 p p cos x + sin x = 1 Û cos ç x - ÷ = Û x - = ± + k 2p Û ê (k Î ¢  ) è 4ø 2 4 4 ê x = p + k 2p ê ë 2 p Đối chiếu điều kiện ta được nghiệm x = + kp hoặc x = k 2p . (k Î ¢  ) 4 3  ì 4 x 2 + 4 xy + y 2 + 2 x + y - 2 = 0 (1) ï 0,25  (1,0 điểm)  Xét hệ phương trình í 2 ï8 1 - 2 x + y - 9 = 0 î  (2) 1 Điều kiện: 1 - 2 x ³ 0 Û x £  . Đặt t = 2 x + y , phương trình (1) trở thành: 2 ét = 1 t2 + t - 2 = 0 Û ê t ë  = -2 Nếu t = 1 thì 2 x + y = 1 Û 1 - 2 x = y ³ 0 . Thế vào phương trình (2) ta được phương trình 0,25  8 y + y 2 - 9 = 0 Đặt u = y ³ 0 , phương trình trở thành: ìx = 0 u 4 + 8u - 9 = 0 Û (u - 1)(u3 + u2 + u + 9) = 0 Û u = 1 . Khi đó hệ có nghiệm í î y = 1 Nếu t = -  thì 2 x + y = -2 Û 1 - 2 x = y + 3 ³ 0 . Thế vào phương trình (2) ta được  2 0,25  phương trình é y = -3 8 y + 3 + y 2 - 9 = 0 Û 8 y + 3 + ( y - 3)( y + 3) = 0 Û ê ê8 + ( y - 3) y + 3 = 0 ë  ì 1 ïx = Với y = -  thì hệ có nghiệm í 3 2 ï y = -3 î  Xét phương trình 8 + ( y - 3) y + 3 = 0 (3)  0,25  Đặt v = y + 3 ³ 0 , phương trình (3) trở thành: v3 - 6 v + 8 = 0 Xét hàm số f (v) = v3 - 6 v + 8 , ta có: f '(v) = 3v 2 - 6 và f '(v) = 0 Û v = ±  2 Hàm f (v  đạt cực đại tại (- 2;8 + 4 2) , đạt cực tiểu tại ( 2;8 - 4 2) ) Vì f (0) = 8 > 0 và 8 - 4 2 > 0 nên f (v) = 0 không có nghiệm v ³ 0 ì 1 ìx = 0 ïx = Vậy hệ phương trình có hai nghiệm là í ;í 2 .  î y = 1 ï y = -3 î  4  1 1 0,25 (1,0 điểm)  Ta có: I = ò x 3 x 4 + 1dx - ò x 5 dx 0 0 1 1 é x6 ù 0,25  1 ò x 5 dx = ê ú = 0 ë 6 û0 6 Đặt t = x 4 + 1 Þ t 2 = x 4 + 1 Þ tdt = 2 x 3 dx 0,25 Đổi cận: x = 0 Þ t = 1 ; x = 1 Þ t =  2 2 2 1 2 1 é t3 ù 2 1 Suy ra: I = ò t dt = 2 ê 3 ú = 3 - 6 2 1 ë û1
  4. 2 -1 www.VNMATH.com 0,25  Vậy I =  .  3 5  (1,0 điểm)  Gọi H = DK Ç IC , do ABCD  là hình vuông cạnh a  nên ta suy ra được 0,25  a 5 CK .CD a 5 3a 5 IC ^ DK , DK = IC =  , CH = =  , IH =  2 DK 5 10 a 3 1 1 1 a3 3 0,25  Xét D  ' AI ta được A ' I =  A . Suy ra: VA '.IDK = .SIDK . A ' I = . .DK .IH . A ' I =  2 3 3 2 16 ì DK ^ IH 0,25  Do í Þ DK ^ ( A ' IH ) Þ ( A ' IH ) ^ ( A ' DK ) î DK ^ A ' I Trong ( A ' IH ) , kẻ IE ^  A ' H . Suy ra: IE ^ ( A ' KD ) Þ IE = d (I ,( A ' KD ) 1 1 1 4 20 32 3a 2 0,25  Xét tam giác D  ' IH : A 2 = 2 + 2 = 2 + 2 = 2 Þ IE =  IE A'I IH 3a 9a 9a 8 3a 2 Vậy d (I ,( A ' KD ) =  .  8 6  x 2 y 2 z2 1 1 1 3 0,25  (1,0 điểm)  Ta có: A = + + + + + ³ 3 3 xyz +  y z x x y z 3 xyz x+y+z 1 0,25  Đặt t =  3 xyz ta có 0 < t = 3 xyz < £  3 2 3 3 9 15 0,25  Khi đó: P ³ 3t + = 12 t + - 9 t ³ 2 36 - =  t t 2 2 1 0,25  Dấu đẳng thức xảy ra khi và chỉ khi x = y = z =  2 15 Vậy min A =  .  2 7.a  0,25 (1,0 điểm) 
  5. Vì C Î AC : x + 2 y - 9 = 0 Þ C (9 - 2c; c ) www.VNMATH.com uuur uuuu r  Khi đó NC = (7 - 2c; c - 8), MC = (9 - 2c; c - 4) Khi đó ta có: uuur uuuu r  éc = 5 NC.MC = 0 Û (7 - 2c)(9 - 2c) - (c - 8)(c - 4) = 0 Û ê 19 êc = ê ë 5 Vì C  có tung độ là một số nguyên nên C (-  5) 1; 0,25  Từ M  kẻ đường thẳng vuông góc với BC  cắt AC  tại A ' æ 1 22 ö Khi đó MA ' : 2 x - y + 4 = 0 . Suy ra A ' ç ; ÷ è 5 5 ø  1 1 0,25  Ta có SA ' MC = .MA '.MC =  2 3 Hai tam giác ABC  và A ' MC  nên æ CB ö 2 S 3 uuur uuur  ì x + 1 = 3.1 ï ç ÷ = ABC = = 9 Þ CB = 3CM Þ í B Þ B(2; 2) è CM ø SA ' MC 1 ï yB - 5 = 3.(-1) î 3 uuu r uuur  Tương tự CA = 3CA ' Þ A(3;3) 0,25  uuu uuur  r Từ AB = DC Þ D (0; 6) Vậy A(3;3), B(2;2), C (-  5), D (0; 6) .  1; 8.a  Gọi I  là trung điểm của đoạn AB  thì I (5; 2; 5) 0,25 (1,0 điểm)  uuur uuur uuu r  Ta có: MA + MB = 2 MI = 2 MI uuur uuur  MA + MB đạt giá trị nhỏ nhất Û MI  nhỏ nhất Û M  là hình chiếu của I  trên mp(P)  0,25  r  Đường thẳng D  qua I  và vuông góc với mặt phẳng (P) nhận n = (1;1;1) là VTCP có  0,25  x -5 y -2 z-5 phương trình = =  1 1 1 Tọa độ giao điểm của M  của D  và (P) là nghiệm của hệ phương trình: 0,25  ìx -5 y-2 z-5 ìx = 0 ï = = ï í 1 1 1 Û í y = -3 ïx + y + z + 3 = 0 ïz = 0 î î  Vậy M (0; -  0) .  3; 9.a  4 Số cách chọn 4 viên bi bất kỳ trong hộp là C15 = 1365 cách  0,25  (1,0 điểm)  Các trường hợp cho ra 4 viên bi có đủ 3 màu là: 0,25  2 1 1 ·  2 đỏ, 1 trắng, 1 vàng: C6 C5C4 = 300 1 2 1 ·  1 đỏ, 2 trắng, 1 vàng: C6C5 C4 = 240 1 1 2 ·  1 đỏ, 1 trắng, 2 vàng: C6C5C4 = 180 Theo quy tắc cộng, cách chọn ra 4 viên bi có đủ ba màu là: 300 + 240 + 180 = 720 cách  Do đó số cách chọn ra 4 viên bi không có đủ ba màu là: 1365 - 720 = 645 cách  0,25  645 43 0,25 Vậy xác suất cần tìm là: P = =  .  1365 91
  6. 7.b  www.VNMATH.com 0,25  (1,0 điểm)  Ta có C  là giao điểm của trục tung và đường thẳng AC  nên C ( 0; 4 ) Vì bán kính đường tròn nội tiếp tam giác ACD  bằng 1 nên bán kính đường tròn nội tiếp  tam giác ABC  cũng bằng 1.  Vì B  nằm trên trục tung nên B(0; b  . Đường thẳng AB  đi qua B  và vuông góc với ) BC º Oy : x = 0 nên AB : y = b æ 16 - 4b ö 0,25  Vì A  là giao điểm của AB  và AC  nên A ç ;b÷ è 3 ø  Gọi r  là bán kính đường tròn nội tiếp tam giác ABC . Ta có 16 - 4b b-4 . 2.SABC 3 1 S= = = b-4 AB + BC + CA 2 3 16 - 4b 2 æ 16 - 4b ö b-4 + + (b - 4) + ç ÷ 3 è 3 ø  Theo giả thiết r = 1 nên ta có b = 1 hoặc b = 7 0,25  Với b = 1 ta có A(4;1), B  (0;1) . Suy ra: D  4) (4; 0,25  Với b = 7 ta có A(-4; 7), B(0; -  . Suy ra: D(-  4) .  7) 4; uuuu r uuu r  8.b  Gọi M (1 + t; -1 - 2t;1 + 3t ) Πd . Ta có: AM = (-1 + t; -2 - 2 t;3t ), AB = (-1; 0; -1) 0,25 (1,0 điểm)  uuuu uuu r r é AM , AB ù = (-2t - 2; 2t + 1; 2t + 2) Þ S 1 uuuu uuu r r  1 0,25 AMB = é AM , AB ù = 12t 2 + 20t + 9 ë û 2 ë û 2 2 0,25  1 æ 5ö 2 1 2 = 12 ç t + ÷ + ³ .  2 è 6 ø  3 2 3 5 æ1 2 3ö 0,25  Dấu đẳng thức xảy ra khi và chỉ khi t = -  . Vậy M ç ; ; - ÷ .  6 è 6 3 2 ø  9.b  ìx - y > 0 0,25  (1,0 điểm)  Điều kiện í î x + y > 0 Ta có: (1) Û 50 = 10.10 lg( x + y ) = 10( x + y) Û x + y = 5 0,25  10 100 0,25  Thế vào (2) ta được: lg( x - y ) = 2 - 2 lg 5 Û x - y = 10 2-2 lg5 = lg 5 2 = = 4 (10 ) 25 ì 9 0,25  ìx + y = 5 ïx = ï Hệ đã cho tương đương với í Ûí 2 î x-y=4 ïy = 1 ï î  2 æ9 1ö Vậy hệ phương trình có nghiệm là ç ; ÷ .  è 2 2 ø  ­­­­­­­­­­­­­­­­­­­Hết­­­­­­­­­­­­­­­­­­­ 
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2