Đề thi thử Đại học lần 1 môn Toán năm 2014 - Trường THPT Lê Lợi
lượt xem 11
download
Mời các bạn cùng tham khảo và luyện tập để đạt kết quả tốt nhất trong kỳ thi tuyển sinh Đạo học - Cao đẳng này nói tài liệu tham khảo: Đề thi thử môn Toán năm 2014 của trường THPT Lê Lợi - Thanh Hóa.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học lần 1 môn Toán năm 2014 - Trường THPT Lê Lợi
- WWW.VNMATH.COM SỞ GD & ĐT THANH HÓA ĐỀ THI KSCL CÁC MÔN THI ĐẠI HỌC (Lần 1) TRƯỜNG THPT LÊ LỢI Năm học 2013 - 2014 Môn thi: Toán. Thời gian làm bài: 180 phút ( không kể giao đề) ĐỀ CHÍNH THỨC Ngày thi: 18 tháng 01 năm 2014 ( Đề thi gồm 2 trang) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) x Câu I (2,0 điểm) Cho hàm số y (C) x 1 a. Khảo sát và vẽ đồ thị của hàm số. b. Tìm m để đường thẳng y = m - x cắt đồ thị (C) tại hai điểm A, B phân biệt sao cho bán kính đường tròn ngoại tiếp tam giác OAB là 2 2 . Câu II (2,0 điểm) 1. Giải phương trình : 2sin 2 x sin 2 x 2 2 sin x sin 3 x 4 4 2. Giải bất phương trình 2 x 1 2 x 17 x y x 5 ( x y ).3 Câu III (1,0 điểm) Giải hệ phương trình : 27 3. log 5 ( x y) x y Câu IV (1,0 điểm) Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SA AB a, AC 2a và ABC 900. Tính thể tích khối chóp S.ABC và cosin của góc giữa hai ASC mặt phẳng (SAB), (SBC). Câu V (1,0 điểm) Cho ba số thực không âm x, y, z thỏa mãn x + y + z = 1. 15 Tìm GTNN của biểu thức P x3 y 3 z 3 xyz 4 I.PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). A. Chương trình chuẩn: Câu VIa: (2,0 điểm) 1. Trong mặt phẳng Oxy cho hình vuông ABCD có M là trung điểm của cạnh BC, phương trình đường thẳng DM: x y 2 0 và C 3; 3 . Biết đỉnh A thuộc đường thẳng d : 3x y 2 0 , xác định toạ độ các đỉnh A, B, D. 2. Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), C(0; 4; 0), S(2; 4; 4). Tìm tọa độ của điểm B trong mặt phẳng Oxy sao cho tứ giác OABC là hình chữ nhật. Viết phương trình mặt cầu ngoại tiếp hình chóp S.OABC và tìm thể tích khối cầu tương ứng đó. Câu VII.a (1,0 điểm). Trong một lô hàng có 12 sản phẩm khác nhau, trong đó có đúng 2 phế phẩm. Lấy ngẫu nhiên 6 sản phẩm từ lô hàng đó. Hãy tính xác suất để trong 6 sản phẩm lấy ra có không quá 1 phế phẩm. A. Chương trình nâng cao: Câu VIb: (2,0 điểm) 1.Trong mặt phẳng tọa độ Oxy cho tam giác ABC có AB 5 , đỉnh C(-1;-1), đường thẳng chứa cạnh AB có phương trình x + 2y - 3 = 0. Trọng tâm G của tam giác ABC thuộc đường thẳng (d) : x y 2 0 . Xác định tọa độ các đỉnh A, B của tam giác. 2.Trong không gian tọa độ Oxyz, cho tam giác ABC có A(3; 1; 0), B nằm trên mặt phẳng Oxy và C nằm trên trục Oz. Tìm tọa độ các điểm B, C sao cho H(2; 1; 1) là trực tâm của tam giác ABC. Câu VII.b (1,0 điểm). Giải bất phương trình log 2 x log 2 x 2 3 5 (log 4 x 2 3) 2 ………………………………….Hết………………………………….. Họ và tên của thí sinh:…………………...…………...... ….………SBD:……...........................…………
- WWW.VNMATH.COM Chữ kí của giám thị:………………..…………………...…................ …………………....……………… Ghi chú: Giám thị coi thi không giải thích gì thêm, thí sinh không dùng tài liệu SỞ GD & ĐT THANH HÓA ĐÁP ÁN THI KSCL CÁC MÔN THI ĐẠI HỌC (Lần 1) TRƯỜNG THPT LÊ LỢI Năm học 2013 - 2014. Môn thi: Toán Hướng dẫn chấm: 1) Điểm toàn bài của thí sinh để lẻ đến 0,25. 2) Bài làm của thí sinh khác cách của đáp án mà vẫn đúng thì cho điểm từng phần tương ứng như nêu trong đáp án. 3) Câu IV (giải theo PP tổng hợp) nếu thí sinh không vẽ hình hoặc vẽ sai cơ bản thì không chấm điểm. Câu ý Nội dung Điểm Khảo sát sự biến thiên và vẽ đồ thị (C) 1,00 1/TXĐ : \ 1 . 2/ Sự biến thiên: a/ Giới hạn và tiệm cận x x x lim ; lim TCĐ : x 1 , lim 1 TCN : y 2 0,25 x 1x 1 x 1 x 1 x x 1 1 b/ Bảng biến thiên : y ' 0, x 1 1 ( x 1)2 x 1 y’ - - 1 0,5 y 1 Hàm số nghịch biến trên các khoảng ( ;1) và (1; ) , hàm số không có cực trị 0,25 3/Đồ thị: TS tự kiểm tra, Nhận xét: Đồ thị nhận I(1;1) là tâm đối xứng. Tìm m để ... bán kính đường tròn ngoại tiếp tam giác OAB là 2 2 1,00 I x Pt hoành độ giao điểm: mx m x 2 mx m 0 (1) (ĐK: x 1 ) x 1 (d) cắt (C) tại hai điểm phân biệt PT(1) có hai nghiệm phân biệt, khác 1 0,25 0 2 m 4m 0 m 0 m 4 (*) 1 0 m R x1 x2 m - Với m tm (*), gọi x1 , x2 là hai nghiệm của (1), theo vi et ta có 2 x1 x2 m 0,25 Đặt A( x1 , m x1 ) , B( x2 , m x2 ) , AB 2( m 2 4m) , OA OB m2 2m , d (O, AB) m 2 1 1 OA.OB. AB S OAB AB.d (O; AB ) m m2 4m đồng thời S OAB 2 2 4R 2 OA.OB. AB (m 2 2 m) 2(m 2 4m) m 2 m từ đó suy ra R 4S 2 m ( m 2 4m) m 2 0,5 2 Theo bài ra ta được 2 2 m 2m m 6 m 2 m 2 Giải PT LG 2sin 2 x sin 2 x 2 2 sinx.sin(3 x ) 1,0 1 II 4 PT 2 sin 2 x sin 2 x 2 2 sinx.sin (3 x ) 2 sin 2 x 2 sinx.cosx 2 2 sinx.sin (3 x ) 4 4 sinx 0 x k 0,5 sinx cosx 2 sin(3x ) (2) 4 x k 3x x k 2 PT(2) 4 4 sin x sin 3 x x k 0,25 4 4 3x ( x ) k 2 8 2 4 4
- WWW.VNMATH.COM Vậy nghiệm của phương trình là x k ; x k , k . 0,25 8 2 4 2. Giải bất phương trình: 2 x 1 2 x 17 (1) 1,00 x ĐKXĐ: x > 0. (* ). Với ĐKXĐ BPT (1) 4 4 16 2 x 17 2 x 1 x x 2 x 1 2 x 17 0,5 2 x 17 2 x 1 4 x (2 x 17) (2 x 1) 2 2 x 17. 2 x 1 16 x (2 x 17)(2 x 1) 6 x 9 (2) 2 3 *TH1: Xét 0 x thì BPT (2) luôn nghiệm đúng. 2 3 *TH2: Xét x khi đó BPT (2) 4 x 2 36 x 17 36 x 2 108 x 81 2 1 3 3 0,5 2 x 2 9 x 4 0 x 4 , do x nên ta được x 4 2 2 2 Vậy tập nghiệm của BPT là S =(0; 4] Giải hệ phương trình ... : 1,00 ĐKXĐ: x + y > 0 5 x y x y 5 x y x 3 3 y Hệ đã cho x y 27 .3 5 3 .3 5 3x y 3 III 27 0,5 ( x y ) 3 5 x y ( x y )3 5 x y ( x y )3 5 x y x y 3 0 y x 3 x 4 (TMĐK) 3 x y 3 0,5 ( x y ) 5 (2 x 3) 125 y 1 S *) Kẻ SH AC SH ( ABC ) ; a 3 ta có SC BC a 3, SH 0,5 2 M A C H a2 3 1 a3 SABC VSABC S ABC .SH 2 3 4 B IV Gọi M là trung điểm của SB, là số đo góc tạo bởi hai mặt phẳng (SAB) và (SBC). Ta có: SA AB a, SC BC a 3 AM SB , CM SB cos cos AMC 0,25 + SAC BAC SH BH a 3 SB a 6 2 2 2 2 2 2 Ta có AM 2 2SA 2 AB SB 10 a AM a 10 , tương tự a 105 CM 4 16 4 4 0,25 Trong tam giác AMC có cos AM 2 CM 2 AC 2 105 . Vậy 105 AMC cos 2. AM .CM 35 35 15 Tìm GTNN của biểu thức: P x 3 y 3 z 3 xyz 1,00 V 4 *) Do vai trò bình đẳng của x, y, z nên ta giả sử x min x, y, z .Từ giả thiết 0 x 1 và y + z = 1 - x 3 *)Ta dễ thấy yz ( y z ) 2 (1 x) 2 và 27 x 3 0 . Khi đó ta được 4 4 4 P x3 y3 z 3 15 xyz x3 ( y z )3 3 yz ( y z ) 15 xyz x3 ( y z)3 yz 15 x 3( y z ) 0,25 4 4 4 2 3 3 27 x x 3 (1 x)3 ( y z ) 27 x 3 1 (27 x3 18 x 2 3 x 4) x (1 x) yz 3 4 4 4 16 Xét hàm f ( x) 1 27 x3 18 x 2 3x 4 , có f '( x) 1 16 (81x 2 36 x 3) , f’(x) = 0 x 1 x 1 16 9 3 0,25
- WWW.VNMATH.COM Bảng biến thiên của hàm f(x): x 0 1/9 1/3 f’(x) + 0 - 7/27 0,25 f(x) 1/4 1/4 1 Từ BBT ta suy ra Pmin đạt được khi x = y = z = 1/3 hoặc x = 0, y = z = 1/2 và các hoán vị của nó. 0,25 4 PHẦN RIÊNG: Chương trình chuẩn 1. Tìm tọa độ của các đỉnhA, B, Dcủa hình vuông(1,0 điểm) 1,00 *) Gọi A(t; 2 - 3t), từ tính chất của hình vuông ta có 4t 4 2.4 d ( A, DM ) 2d (C , DM ) t 1 t 3 A(3; 7) A(1;5) 0,25 2 2 Mặt khác A, C nằm về hai phía đối với đường thẳng DM nên chỉ có A(-1; 5) thỏa mãn. 1 *) Gọi D( d ; d 2) thuộc DM, ta có AD (d 1; d 7); CD (d 3; d 1) ABCD là hình vuông nên DA.DC 0 d 1 d 5 d 5 D (5;3) 0,5 2 2 2 2 DA DC (d 1) (d 7) ( d 1) ( d 3) *) AB DC B( 3; 1) . Vậy A( 1;5), B ( 3; 1), D (5; 3) 0, 25 Tìm tọa độ của B và viết PT mặt cầu ngoại tiếp hình chóp 1,00 Gọi B(x; y; 0), khi đó OB ( x; y;0) , VI.a Tứ giác OABC là hình chữ nhật nên OB OA OC x 2 B (2; 4; 0) 0,25 y 4 2 2 2 2 2 2 Giả sử PT mặt cầu cần tìm có dạng x y z 2ax 2by 2cz d 0 ( Với a b c 0 ) d 0 2 Mặt cầu đi qua O, S, A, C nên ta có 36 4a 8b 8c d 0 a 1; b c 2, d 0, 0,5 4 4a d 0 16 8b d 0 2 2 2 Vậy PT mặt cầu là x y z 2 x 4 y 4 z 0 Gọi R là bán kính mặt cầu, từ phương trình ta suy ra R = 3 thể tích khối cầu là V( S ) 4 .33 36 0,25 3 Tính xác suất để trong 6 sản phẩm lấy ra có không quá một phế phẩm 1,00 + Mỗi kết quả lấy ra 6 sản phẩm ứng với một tổ hợp chập 6 của 12, do đó số kết quả có thể xảy ra là 6 0,25 C12 924 + Gọi A là biến cố ” Lấy ra 6 sản phẩm mà trong đó có hai phế phẩm” , VII.a khi đó A là biến cố ” Lấy ra 6 sản phẩm mà trong đó có không quá một phế phẩm” , : 0,5 2 2 Ta tìm được : A C2 .C10 210 Theo định nghĩa xác suất ta có: A 210 5 P ( A) 1 5 17 0,25 P( A) 924 22 22 22 PHẦN RIÊNG: Chương trình Nâng cao VIb 1 Xác định tọa độ các đỉnh của tam giác 1,00 + Gọi I(x;y) là trung điểm của cạnh AB, G là trọng tâm tam giác 2 x 1 Ta có 2 xG 3 . G thuộc d: x + y - 2 = 0 nên 2 x 1 2 y 1 2 0 CG CI 3 3 0,25 3 y 2 y 1 G 3
- WWW.VNMATH.COM 2 x 1 2 y 1 Tọa độ I thỏa mãn hệ 3 3 2 0 x 5 x 2y 3 0 y 1 + Do A thuộc x 2 y 3 0 nên tọa độ A là A(3 2a; a ) 1 3 Theo giả thiết AB 5 IA 5 IA2 5 (2 2a ) 2 (a 1) 2 5 a a 0,5 2 4 4 2 2 1 3 Từ đó tìm được A(4; ), B (6; ) hoặc A(6; 3 ), B (4; 1 ) 0,25 2 2 2 2 Tìm tọa độ của các đỉnh B, C 1,00 - B mp (Oxy) , C Oz B( x; y;0); C (0;0; z ) Ta có AH ( 1; 0;1), BH (2 x;1 y;1) , BC ( x; y; z ), AC (3; 1; z ), AB ( x 3; y 1;0) . 0,5 x z 0 z x AH BC - H là trực tâm tam giác ABC nên suy ra . 0 3 x y z 7 0 y 7 2 x 2 BH . AC 0 2 x yz 3 y z 0 2 x x 21 0 AH , AC . AB 0 x 3; y 1; z 3 7 7 0,5 Vì A, B phân biệt nên ta nhận nghiệm B ( ;14; 0), C (0;0; ) x 7 ; y 14; z 7 2 2 2 2 1,00 Giải bất phương trình log 2 x log 2 x 2 3 5 (log 4 x 2 3) (1) 2 log 2 x log 2 x 2 3 0 2 ĐKXĐ: (*) x 0 0,25 Với ĐKXĐ (* ) BPT tương đương với log 2 x log 2 x 2 3 5(log 2 x 3) 2 VII.b Đặt t log 2 x , BPT (1) trở thành t 2 2t 3 5(t 3) (t 3)(t 1) 5(t 3) t 1 t 1 1 t 3 . Từ đó ta được log 2 x 1 0 x 2 3 t 4 3log x 4 0,5 (t 1)(t 3) 5(t 3) 2 2 8 x 16 Vậy tập nghiệm của BPT đã cho là S = 0; 1 (8;16) 0,25 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p | 871 | 155
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p | 148 | 6
-
Đề thi thử Đại học lần 4 môn Toán
6 p | 108 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 83 | 5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p | 88 | 3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p | 124 | 3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p | 125 | 3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p | 93 | 3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p | 83 | 3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p | 109 | 3
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p | 113 | 2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p | 98 | 2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p | 112 | 2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p | 80 | 2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p | 96 | 2
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p | 109 | 2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p | 117 | 2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p | 134 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn