intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2012 MÔN TOÁN KHỐI B TRƯỜNG THPT CHUYÊN QUỐC HỌC

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:1

185
lượt xem
48
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học lần 1 năm 2012 môn toán khối b trường thpt chuyên quốc học', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2012 MÔN TOÁN KHỐI B TRƯỜNG THPT CHUYÊN QUỐC HỌC

  1. www.VNMATH.com TRƯỜNG THPT CHUYÊN ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 – LẦN 1 QUỐC HỌC Môn thi: TOÁN – Khối B Thời gian làm bài 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG: (8 điểm) Câu I: (2 điểm) x-2 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = x - 1 (C). 2) Chứng minh rằng với mọi giá trị thực của m, đường thẳng (d): y = -x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB. Câu II: (2 điểm) 1) Giải phương trình: π π 2) Giải phương trình: tan(x - ).tan(x + ).sin3x = sinx + sin2x. 6 3 Câu III: (1 điểm) Tính thể tích khối chóp S.ABC biết SA = a, SB = b, SC = c, , , . Câu IV: (1 điểm) Giải hệ phương trình Câu V: (1 điểm) Chứng minh rằng với mọi x ≥ 0, ta có: log4 (1 + 4x) ≥ log9 (9x + 2x) Câu VI: (1 điểm) Tìm giá trị nhỏ nhất của biểu thức: II. PHẦN RIÊNG: (2 điểm) Thí sinh chỉ được chọn một trong hai phần A hoặc B PHẦN A Câu VII: (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho hai đường thẳng có phương trình (d): x + y + 1 = 0 và (d’): 2x – y – 1 = 0 . Lập phương trình đường thẳng qua điểm M(1;-1) cắt (d), (d’) tương ứng tại A và B sao cho . 2) Tìm hệ số của x10 trong khai triển thành đa thức của biểu thức: P = (1 + x + x2 + x3)5. PHẦN B Câu VII: (2 điểm) x2 y2 1) Trong mặt phẳng tọa độ Oxy cho hypebol (H): 9 - 4 = 1. Gọi (d) là một tiếp tuyến thay đổi và F là một trong hai tiêu điểm của (H), kẻ FM vuông góc với (d). Chứng minh M luôn nằm trên một đường tròn cố định, viết phương trình đường tròn đó. 2) Người ta sử dụng 5 cuốn sách Toán, 6 cuốn sách Vật lý, 7 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm giải thưởng cho 9 học sinh, mỗi học sinh được hai cuốn sách khác loại. Trong số 9 học sinh trên có hai bạn Ngân và Phương. Tìm xác suất để hai bạn đó có giải thưởng giống nhau. ------------------HẾT------------------
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2