Đề thi thử đại học lần 1, năm 2014 có đáp án môn: Toán, khối A, A1, B - Trường THPT Nguyễn Trung Thiên
lượt xem 0
download
Kì thi đại học, cao đẳng là kì thi quan trọng đối với mỗi học sinh. Dưới đây là đề thi thử đại học lần 1, năm 2014 có đáp án môn "Toán, khối A, A1, B - Trường THPT Nguyễn Trung Thiên" giúp các em kiểm tra lại đánh giá kiến thức của mình và có thêm thời gian chuẩn bị ôn tập cho kì thi sắp tới được tốt hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học lần 1, năm 2014 có đáp án môn: Toán, khối A, A1, B - Trường THPT Nguyễn Trung Thiên
- www.VNMATH.com së gi¸o dôc vµ ®µo t¹o hµ tÜnh §Ò THi thö ®¹i Häc LÇN I n¨m 2014 Trêng THPT NguyÔn Trung Thiªn Môn thi: To¸n - KHỐI A, A1, B Thời gian làm bài: 180 phút I. PhÇn chung cho tÊt c¶ thÝ sinh (7,0 ®iÓm) x−3 C©u I (2,0 ®iÓm) Cho hµm sè y = cã ®å thÞ (C) x +1 1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè. 2. ViÕt ph¬ng tr×nh tiÕp tuyÕn cña (C) biÕt kho¶ng c¸ch tõ giao ®iÓm I cña 2 tiÖm cËn cña (C) ®Õn tiÕp tuyÕn b»ng 2 2 . C©u II (2,0 ®iÓm) π 1. Gi¶i ph¬ng tr×nh 1 + 2 sin(2 x + ) = cos x + cos 3 x . 4 t anx 2. TÝnh: I= ∫ 1 + cos 2 xdx x 2 + y 2 + xy = 4 y − 1 C©u III (1,0 ®iÓm) Gi¶i hÖ ph¬ng tr×nh: y x + y = 2 +2 x +1 C©u IV (1,0 ®iÓm) Cho h×nh chãp S.ABCD cã ®¸y ABCD lµ h×nh thang. §¸y lín AB = 2a ; BC = CD = DA = a; SA vu«ng gãc víi ®¸y, mÆt ph¼ng(SBC) t¹o víi ®¸y mét gãc 60o . TÝnh thÓ tÝch khèi chãp S.ABCD theo a. C©u V (1,0 ®iÓm) Cho 3 sè thùc d¬ng x, y, z. T×m gi¸ trÞ nhá nhÊt cña biÓu thøc : x2 2 y2 2 z2 2 P = x( + ) + y ( + ) + z ( + ) . 3 yz 3 xz 3 xy II. PhÇn riªng (3,0 ®iÓm): ThÝ sinh chØ ®îc lµm mét trong hai phÇn (phÇn A hoÆc phÇn B) A. Theo ch¬ng tr×nh chuÈn C©u VI. a. (1,0 ®iÓm) Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho tam gi¸c ABC cã träng t©m G (2;-1). §êng trung trùc cña c¹nh BC cã ph¬ng tr×nh d : 3x − y − 4 = 0 . §êng th¼ng AB cã ph¬ng tr×nh d1 :10 x + 3 y + 1 = 0 . T×m täa ®é c¸c ®Ønh A, B, C. C©u VII. a. (1,0 ®iÓm) Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho hai ®iÓm A(2;0), B(6;4). ViÕt ph¬ng tr×nh ®êng trßn (C) tiÕp xóc víi trôc hoµnh t¹i ®iÓm A vµ kho¶ng c¸ch tõ t©m (C) ®Õn B b»ng 5. n 2 C©u VIII. a. (1,0 ®iÓm ) T×m sè h¹ng kh«ng chøa x trong khai triÓn P ( x ) =3 x + ( x > 0) . x BiÕt r»ng n tháa m·n: Cn6 + 3Cn7 + 3Cn8 + Cn9 = 2Cn8+ 2 . B. Theo ch¬ng tr×nh n©ng cao C©u VI. b. (1,0 ®iÓm) Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho tam gi¸c ABC vu«ng c©n t¹i A(1;2). ViÕt ph¬ng tr×nh ®êng trßn (T) ngo¹i tiÕp tam gi¸c ABC biÕt ®êng th¼ng d : x − y − 1 = 0 tiÕp xóc víi (T) t¹i B. C©u VII. b. (1,0 ®iÓm) Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho hai ®êng th¼ng d1 : 3x + y + 5 = 0 ; d 2 : 3 x + y + 1 = 0 vµ ®iÓm I(1;-2). ViÕt ph¬ng tr×nh ®êng th¼ng ®i qua I c¾t d1 , d 2 lÇn lît t¹i A vµ B sao cho AB = 2 2 . x3 2 C©u VIII. b. (1,0 ®iÓm) Gi¶i ph¬ng tr×nh: log 2 x + log 2 = 2. 2 x --------------------- HÕt --------------------
- §¸p ¸n K.A gåm cã 6 trang. www.VNMATH.com Lu ý : Mäi c¸ch gi¶i ®óng ®Òu cho ®iÓm tèi ®a. C©u §¸p ¸n vµ híng dÉn chÊm §iÓm C©u 1 (1,0 ®iÓm) I. ________________________________________________________________________ + TËp x¸c ®Þnh: D = R \ {−1} 2,0 0,25 ®iÓm 4 + Sù biÕn thiªn: y ' = > 0 , ∀x ≠ −1 , suy ra hµm sè ®ång biÕn trªn c¸c kho¶ng ( x + 1)2 ( −∞; −1) vµ ( −1; +∞ ) . ________________________________________________________________________ + Giíi h¹n: lim y = 1 ; lim y = 1 => TiÖm cËn ngang: y=1 x →−∞ x →+∞ lim− y = +∞ ; lim y = −∞ => TiÖm cËn ®øng: x=-1. 0,25 x →−1 x →+∞ ________________________________________________________________________ + B¶ng biÕn thiªn: x −∞ -1 +∞ y’ + 0,25 y +∞ 1 1 −∞ ________________________________________________________________________ + §å thÞ : Giao víi Ox: (3;0), giao víi Oy: (0;-3). 0.25 1 -1 0 3 x -3 §å thÞ nhËn I(-1;1) lµm t©m ®èi xøng. 2 (1,0 ®iÓm) ________________________________________________________________________ x −3 Gi¶ sö M ( x0 ; y0 ) thuéc (C), y0 = 0 , x0 ≠ −1 . x0 + 1 Khi ®ã ph¬ng tr×nh tiÕp tuyÕn ∆ t¹i M lµ: 0.25 4 x −3 2 ( y= x − x0 ) + 0 ( x0 + 1) x0 + 1 ⇔ 4 x − ( x0 + 1) y + ( x02 − 6 x0 − 3) = 0 2 ________________________________________________________________________ Theo ®Ò : d ( I , ∆) = 2 2 ( −4 − ( x0 + 1) + x02 − 6 x0 − 3 2 ) ⇔ =2 2 0.25 16 + ( x0 + 1) 4 ⇔ ( x0 + 1) − 8 ( x0 + 1) + 16 = 0 4 2
- www.VNMATH.com x0 = 1 ⇔ x0 = −3 ________________________________________________________________________ Víi x0 = 1 , ph¬ng tr×nh ∆ : y = x − 2 ; 0,5 Víi x0 = −3 , ph¬ng tr×nh ∆ : y = x + 6 . C©u 1 (1,0 ®iÓm) II. ________________________________________________________________________ 2,0 PT ⇔ 1 + sin 2 x + cos 2 x = 2cos x cos 2 x ®iÓm ⇔ 2 cos2 x + 2sin x cos x − 2cos x cos 2 x = 0 ( ) ⇔ 2 cos x cos x + sin x − ( cos2 x − sin 2 x ) = 0 0,25 ⇔ cos x ( cos x + sin x )(1 − cos x + sin x ) = 0 ________________________________________________________________________ π x = + kπ cos x = 0 2 ⇔ tan x = −1 0,5 ⇔ cos x + sin x = 0 cos x − sin x = 1 cos x + π = 1 4 2 ________________________________________________________________________ π x = 2 + kπ π 0,25 ⇔ x = − + kπ 4 k ∈ x = k 2π 2 (1,0 ®iÓm) ________________________________________________________________________ tan x sin x cos x Ta cã: I = ∫ dx = ∫ dx 1 + cos x 2 cos x(1 + cos2 x) 0,25 §Æt t = cos 2 x ⇒ dt = −2sin x cos xdx 1 dt Suy ra: I = − ∫ 2 t (t + 1) ________________________________________________________________________ 1 1 1 1 t +1 I = ∫ − dt = ln +C 0,5 2 t +1 t 2 t ________________________________________________________________________ 1 1 + cos2 x KÕt luËn: I = ln +C . 0,25 2 cos2 x C©u NhËn xÐt y=0 kh«ng tháa m·n hÖ ph¬ng tr×nh. III. 1,0 0,25 ®iÓm
- www.VNMATH.com x2 + 1 y + x + y = 4 HÖ t¬ng ®¬ng víi x + y = y + 2 x2 +1 0,25 ________________________________________________________________________ u + v = 4 x2 +1 0,25 §Æt u = , v = x + y. HÖ trë thµnh: 1 y v = u + 2 Gi¶i hÖ ta cã: u =1 0,25 v=3 ________________________________________________________________________ x = 1 x2 + 1 u = 1 = 1 y = 2 Víi ⇒ y ⇔ v = 3 x = −2 x + y = 3 y = 5 C©u IV. 1,0 ®iÓm N B A 60 0 Gäi N lµ trung ®iÓm AB. D C AN // DC Ta cã: nªn ADCN lµ h×nh b×nh hµnh. AN = DC = a Suy ra: NC = AD = a => NA = NB = NC =a hay ∆ACB vu«ng t¹i C suy ra AC ⊥ BC . 0,25 Do SA ⊥ ( ABCD ) nªn SA ⊥ BC . ¸p dông ®Þnh lý ba ®êng vu«ng gãc ta suy ra SC ⊥ BC . Suy ra: Gãc gi÷a (SBC) vµ (ABCD) lµ ∠SCA => ∠SCA = 60° ________________________________________________________________________ MÆt kh¸c: ∆NBC ®Òu nªn ∠NBC = 60° 3 AC = AB = 3a 2 0,25 SA = AC .tan 60° = 3a. 3 = 3a ________________________________________________________________________ 3 3a 2 S ABCD = 4 0,25 ________________________________________________________________________ 3 3a 3 TÝnh ®îc thÓ tÝch chãp S.ABCD b»ng . 0,25 4
- C©u www.VNMATH.com x3 + y 3 + z 3 x2 + y 2 + z 2 V. Ta cã : P = + 2 3 xyz 1,0 ¸p dông bÊt ®¼ng thøc a 2 + b 2 ≥ 2ab, ∀a, b ⇒ x 2 + y 2 + z 2 ≥ xy + yz + zx . ®iÓm 0,25 (§¼ng thøc x¶y ra khi x=y=z) x +y +z 3 3 3 xy + yz + zx x3 2 y 3 2 z 3 2 ⇒ P≥ + 2 ⇒ P ≥ + + + + + 3 xyz 3 x 3 y 3 z ________________________________________________________________________ t3 2 XÐt hµm sè f (t ) = + víi t > 0 ; 3 t 2 f '(t ) = t 2 − 2 ; f '(t ) = 0 ⇔ t = 4 2 . 0,25 t ________________________________________________________________________ B¶ng biÕn thiªn: t 0 4 2 +∞ y’ - 0 + 0,25 y +∞ +∞ 8 34 2 ________________________________________________________________________ VËy P ≥ 4 4 8 . §¼ng thøc x¶y ra khi x = y = z = 4 2 hay P = 4 4 8 . 0,25 A. Theo ch¬ng tr×nh chuÈn C©u Gäi M lµ trung ®iÓm BC, v× M ∈ d nªn M (m; 3m-4). VI. a. Mµ GA = −2GM nªn A (6-2m; 5-6m). 0,25 1,0 ________________________________________________________________________ ®iÓm A ∈ AB ⇒ m = 2 ⇒ M ( 2; 2 ) , A ( 2; −7 ) . 0,25 ________________________________________________________________________ BC qua M vµ vu«ng gãc víi d nªn cã ph¬ng tr×nh x + 3y – 8 = 0. B = AB ∩ BC nªn B ( −1;3) . 0,25 ________________________________________________________________________ M lµ trung ®iÓm BC nªn C ( 5;1) . 0,25 C©u Gäi I ( x0 ; y0 ) lµ t©m cña ®êng trßn (C). VII. Khi ®ã, do (C) tiÕp xóc víi Ox t¹i A nªn víi i = (0;1) lµ vect¬ ®¬n vÞ trªn trôc Ox, ta cã: a. 0,25 IA ⊥ i ⇔ 1. (1 − x0 ) + 0. ( 0 − y0 ) = 0 ⇔ x0 = 2 . 1,0 ®iÓm ________________________________________________________________________ Theo gi¶ thiÕt, ta cã: R = IB – 5 ; IB 2 = 25 ⇔ ( 2 − 6 ) + ( y0 − 4 ) = 25 2 2 0,25 y = 7 ⇔ y0 − 4 = ±3 ⇔ 0 y0 = 1 ________________________________________________________________________
- Víi y0 = 7 th× I (2; 7) ⇒ R = 7 . www.VNMATH.com Víi y0 = 1 th× I (2;1) ⇒ R = 1 . VËy ta cã hai ®êng trßn cÇn t×m: 0,5 ( x − 2 )2 + ( y − 7 )2 = 49 ; ( x − 2 )2 + ( y − 1)2 = 1 C©u ¸p dông c«ng thøc Cnk + Cnk +1 = Cnk++11 , ta cã: VIII. Cn6 + 3Cn7 + 3Cn8 + Cn9 = Cn6 + Cn7 + 2(Cn7 + Cn8 ) + Cn8 + Cn9 a. = Cn7+1 + 2Cn8+1 + Cn9+1 = Cn8+ 2 + Cn9+ 2 = Cn9+3 1,0 0,25 ®iÓm Gi¶ thiÕt t¬ng ®¬ng víi n+3 Cn9+3 = 2Cn8+ 2 ⇔ = 2 ⇔ n = 15 . 9 ________________________________________________________________________ n 3 2 Khi ®ã P ( x ) = x + x 15− k k 2 ( x) 15 = ∑C k 15 3 K =0 x 15 30 − 5 k 0,25 = ∑C 2 x k 15 k 6 . K =0 ___________________________________________________________________ 30 − 5k Sè h¹ng kh«ng chøa x t¬ng øng víi = 0 ⇔ k = 6. 0,25 6 ________________________________________________________________________ Sè h¹ng ph¶i t×m lµ C156 .26 = 320320 . 0,25 B. Theo ch¬ng tr×nh n©ng cao C©u Gäi I lµ t©m cña ®êng trßn ngo¹i tiÕp ∆ABC . VI. b. V× ∆ABC vu«ng c©n t¹i A nªn I lµ trung ®iÓm BC vµ AI ⊥ BC . 1,0 Theo gi¶ thiÕt BC ⊥ (d ) ⇒ d / / AI ⇒ B¸n kÝnh cña (T) lµ: R = d ( A, d ) = 2 . 0,25 ®iÓm BC ⊥ (d ) ⇒ BC: x + y + c = 0. ________________________________________________________________________ 1+ 2 + C C = −1 d ( A, d ) = R = 2 ⇔ = 2 ⇔ 2 C = −5 BC : x + y − 1 = 0 0,25 Suy ra BC : x + y − 5 = 0 §êng cao AI cña ∆ABC ®i qua A (1; 2 ) vµ song song víi (d ) ⇒ AI : x − y + 1 = 0 . ________________________________________________________________________ x + y −1 = 0 NÕu BC : x + y − 1 = 0 ⇒ I = BC ∩ AI : ⇒ I(0;1). x − y +1 = 0 0.25 Suy ra: (T ) : x 2 + ( y − 1) = 2 . 2 ________________________________________________________________________ x + y − 5 = 0 NÕu BC : x + y − 5 = 0 ⇒ I = BC ∩ AI : ⇒ I(2;3). x − y + 1 = 0 0,25 Suy ra: (T ) : ( x − 2 ) + ( y − 3) = 2 . 2 2 VËy cã hai ®êng trßn: x 2 + ( y − 1) = 2 vµ ( x − 2 ) + ( y − 3) = 2 . 2 2 2
- C©u www.VNMATH.com V× A ∈ d1 , B ∈ d 2 nªn gäi täa ®é A(a; −3a − 5) ; B(b; −3b − 1) . VII. 0,25 AB = ( b − a; 4 − 3(b − a ) ) . b. ________________________________________________________________________ 1,0 Tõ gi¶ thiÕt AB = 2 2 suy ra: ®iÓm (b − a ) + 4 − 3 ( b − a ) = 2 2 . 2 2 0,25 t = 2 §Æt t = b − a , ta cã: t + ( −3t + 4 ) = 8 ⇔ 2 2 2 t = 5 ________________________________________________________________________ Víi t = 2 ⇒ b − a = 2 ⇒ AB = (2; −2) lµ vect¬ chØ ph¬ng cña ∆ cÇn t×m. x −1 y + 2 0,25 Suy ra ph¬ng tr×nh ®êng th¼ng cña ∆ lµ = ⇔ x + y +1 = 0 . 2 −2 ________________________________________________________________________ 2 2 Víi t = ⇒ b − a = . 0,25 5 5 T¬ng tù ta cã ph¬ng tr×nh ®êng th¼ng cña ∆ lµ 7 x − y − 9 = 0 . VËy cã hai ®êng th¼ng cÇn t×m lµ x + y + 1 = 0 vµ 7 x − y − 9 = 0 . C©u 1 §k: x > 0 , x ≠ . 0,25 VIII. 2 b. x3 1,0 log 2 PT ⇔ 2 + 2 log 2 = 2 ®iÓm 2 log 2 2 x x ________________________________________________________________________ 0,25 3log 2 x − 1 1 3log 2 x − 1 ⇔ + 2 1 − log 2 x = 2 ⇔ − log 2 x = 0 1 + log 2 x 2 1 + log 2 x ________________________________________________________________________ 3t − 1 §Æt t = log 2 x , ta cã: − t = 0 ⇔ 3t − 1 − t (t + 1) = 0 ⇔ t 2 − 2t + 1 = 0 ⇔ t = 1 1+ t 0,25 ________________________________________________________________________ Víi t = 1 ⇒ log 2 x = 1 ⇒ x = 2 . VËy ph¬ng tr×nh cã nghiÖm x = 2 . 0,25
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p | 869 | 155
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p | 142 | 6
-
Đề thi thử Đại học lần 4 môn Toán
6 p | 106 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 82 | 5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p | 86 | 3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p | 123 | 3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p | 122 | 3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p | 93 | 3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p | 82 | 3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p | 109 | 3
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p | 110 | 2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p | 97 | 2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p | 111 | 2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p | 75 | 2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p | 95 | 2
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p | 108 | 2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p | 115 | 2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p | 130 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn