ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT NĂM 2011 MÔN TOÁN
lượt xem 18
download
Cho hàm số y = x3 – 3mx2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trong trường hợp đó.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT NĂM 2011 MÔN TOÁN
- ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT NĂM 2011 SỞ GD&ĐT THÁI NGUYÊN MÔN: TOÁN - KHỐI B TRƯỜNG THPT LƯƠNG NGỌC QUYẾN http://ductam_tp.violet.vn/ (Thời gian làm bài 180 phút không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm). Câu I: (2,0 điểm). Cho hàm số y = x3 – 3mx2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) c ủa hàm s ố trong trường hợp đó. Câu II: (2,0 điểm). 1. Giải phương trình sau: (1 – tanx) (1+ sin2x) = 1 + tanx. 51 − 2x − x 2 2. Giải bất phương trình:
- ĐÁP ÁN, THANG ĐIỂM THI THỬ ĐẠI HỌC NĂM 2010 – MÔN TOÁN – KHỐI B Điể Nội dung Câu m I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) CâuI 2.0 1. y’= 3x – 6mx + m -1, ∆ ' = 3(3m − m + 1) > 0 ∀m => hs luôn có cực trị 2 2 0.5 y '(2) = 0 � m =1 2. y’’ = 6x - 6m => hs đạt cực tiểu tại x = 2 � y ''(2) > 0 0.5 +) Với m =1 => y = x3 -3x + 2 (C) TXĐ: D = R x=0 Chiều biến thiên: y ' = 3x − 6 x, y' = 0 2 0.25 x=2 => hs đồng biến trên mỗi khoảng (− ;0) và (2; + ) , nghịch biến trên khoảng (0 ;2) Giới hạn: xlim y = − , xlim y = + − + Điểm uốn: y’’ =6x – 6, y’’ đổi dấu khi x đi qua x = 1 => Điểm uốn U(1; 0) 0,25 BBT x - 0 2 + y’ + 0 - 0 + 2 + y - -2 0.25 ( ) + Đồ thị (C): Đồ thị cắt trục hoành tại điểm (1; 0), 1 3;0 , trục tung tại điểm (0; 2) y f(x)=x^3-3x^2+2 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 Đồ thị nhận điểm uốn làm tâm đối xứng 0.25 CâuII 2.0 π + lπ (l Z) 1. TXĐ: x 0,25 2 t=0 � 2t � 2t (1 − t ) �+ = 1+ t Đặt t= tanx => sin 2 x = 1 2 , đc pt: 2� 0,25 t = −1 � 1+ t � 1+ t Với t = 0 => x = k π , (k Z ) (thoả mãn TXĐ) 0,25 π Với t = -1 => x = − + kπ (thoả mãn TXĐ) 0,25 4 2
- 2. 1,0 1− x < 0 51 − 2 x − x 2 0 51 − 2 x − x 2 0 1− x 51 − 2 x − x 2 0 51 − 2 x − x 2 < (1 − x) 2 0,5 x >1 x ��1 − 52; −1 + 52 � − � � x 1 − x = cos t , dx = cos tdt 2 0,25 π 4 ( sin t ) dt 0,25 A= 2 0 π −2 A= 0,5 8 Câu IV 1,0 S M I N QI A D H O B P C a. Kẻ MQ//SA => MQ ( ABCD) (α ) ( MQO) ⊥ 0,25 Thiết diện là hình thang vuông MNPQ (MN//PQ) ( MN + PQ).MQ 3a 2 Std = = (đvdt) 2 8 0.25 b. ∆AMC : OH / / AM , AM ⊥ SD, AM ⊥ CD � AM ⊥ ( SCD ) � OH ⊥ ( SCD ) 0.25 Gọi K là hình chiếu của O trên CI � OK ⊥ CI , OH ⊥ CI � CI ⊥ (OKH ) � CI ⊥ HK 0.25 Trong mp(SCD) : H, K cố định, góc HKC vuông => K thuộc đường tròn đg kính HC 3
- uuuu r uuuu r CâuV 0.25 M�∆ � M (2t + 2; t ), AM = (2t + 3; t − 2), BM = (2t − 1; t − 4) 0.25 2 AM 2 + BM 2 = 15t 2 + 4t + 43 = f (t ) �2� 26 2� � Min f(t) = f � � M � ; − � − => 0,5 � 15 � 15 15 � � II. PHẦN RIÊNG(3,0 điểm) A. Chương trình chuẩn CâuVI.a 2.0 a. (C) : I(1; 3), R= 2, A, B (C ) , M là trung điểm AB => IM ⊥ AB => Đường thẳng d 0,5 cần tìm là đg thẳng AB uuu r 0,5 d đi qua M có vectơ pháp tuyến là IM => d: x + y - 6 =0 0.25 2. Đg thẳng tiếp tuyến có dạng : y = - x + m x + y – m =0 (d’) d’ tiếp xúc với (C) � d ( I ; d ') = R = 2 0.25 m = 4+2 2 0,25 m = 4−2 2 x + y − (4 + 2 2) = 0 Pt tiếp tuyến : x + y − (4 − 2 2) = 0 0,25 CâuVII.a 1.0 0,25 (1 + i ) 21 − 1 P = 1 + (1 + i ) + ... + (1 + i ) 20 = i 10 (1 + i ) 21 = � + i) 2 � .(1 + i ) = (2i )10 (1 + i ) = −210 (1 + i) (1 � � 0,25 −2 (1 + i) − 1 10 ( ) P= = −210 + 210 + 1 i 0,25 i 0,25 Vậy: phần thực −210 , phần ảo: 210 + 1 B. Chương trình nâng cao Câu 2.0 VI.b uu r 0,5 1. ∆ �d = B � B(−3 + 2t;1 − t; −1 + 4t ) , Vt chỉ phương ud = (2; −1; 4) uuu uu rr 0,5 AB.ud = 0 � t = 1 => B(-1;0;3) 0,5 x = −1 + 3t Pt đg thẳng ∆ AB : y = 2t 0,5 z = 3−t Câu VII.b 2 V = π ln 2 xdx 0.25 1 1 Đặt u = ln x � du = 2 ln x. dx; dv = dx � v = x 2 0.25 x � V = 2π ( ln 2 − 2 ln 2 + 1) 0.5 2 (Học sinh giải đúng nhưng không theo cách như trong đáp án, gv vẫn cho điểm tối đa tương ứng như trong đáp án ). 4
- 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p | 870 | 155
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p | 147 | 6
-
Đề thi thử Đại học lần 4 môn Toán
6 p | 108 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 83 | 5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p | 88 | 3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p | 124 | 3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p | 125 | 3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p | 93 | 3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p | 83 | 3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p | 109 | 3
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p | 112 | 2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p | 98 | 2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p | 112 | 2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p | 79 | 2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p | 96 | 2
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p | 109 | 2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p | 117 | 2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p | 133 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn